

Degeneracy pressure

- Normal gas ٠
 - P V = n k T
 - · Pressure is greater at higher temperature because the marbles are moving faster.
- If the gas is confined to a very small space, Newton's 2nd law becomes invalid. New laws of motion, called quantum mechanics.
- Heisenberg's uncertainty principle. A particle is allowed a space x. •
 - The quantity m v x must be greater than h, Planck's constant.
 - A particle must move if it is confined to a small space.
 - If you confine an electron to 10-9m, it moves at 700km/s ٠
- Pressure of a degenerate gas ٠
 - P V^{5/3} = constant n^{5/3}
 - constant = h^2/m
 - Pressure does not depend on temperature •

Longer arrows mean higher average spe

Other fusion reactions? • Sun has one more trick after He is exhausted in core.

- Burn He in a shell
- · Sun is not massive enough to shrink further and get hotter
 - Core is supported by pressure of degenerate electrons.
 - · Temperature does not rise to burn anything else.
- End of the road: planetary nebula & white dwarf core

Reaction	Dro Min. Tettap
4 ¹ H → ⁴ He	10 MK
3 4He → 12C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na,	800 MK
Mg	
Ne ➔ O, Mg	1500MK
O ➔ Mg, S	2000MK
Si → Fe peak	3000MK

Cygnus Loop Supernova 20,000 yr ago

- Where were the elements in the baby made?
 - Carbon was made and expelled by giants
 - Iron was made in massive stars and expelled by supernovae
 - · Heavier elements were made in supernovae & in giants by the R & S processes

1

Guest star of 1054

- Records of Sung Dynasty
 - In the first year of the period Chih-ho, ..., a guest star appeared several degrees SE of Thien-kuan. After more than a year it gradually became invisible.-p578.
- Gas expelled in 1054AD, still glowing
- Other SN
 - 1572 Tycho
 - 1604 Kepler

What is a supernova? Why sun becomes a white dwarf, not a supernova

 In future double-shell burning sun, hot enough to burn 3⁴He→¹²C

•	When He exhausted,
	gravity wins, and core contracts.

- Temperature rises.
- Electrons are so tight that they become degenerate.
- New source of pressure to resist gravity.
- Temperature not hot enough to burn carbon.

Reaction	Min. Temp.
4 ¹ H → ⁴ He	10 ⁷ ° K
3 ⁴ He → ¹² C	2x10 ⁸
$^{12}C + {}^{4}He \rightarrow {}^{16}O$, Ne, Na, Mg	8x10 ⁸
Ne ➔ O, Mg	1.5x10 ⁹
O ➔ Mg, S	2x10 ⁹
Si →Fe peak	3x10 ⁹

What is a supernova? Why massive star becomes a supernova

- Hot enough to burn ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O}$, etc
- When C exhausted, gravity wins, and core contracts.
- Temperature rises.
- Temperature hot enough to burn neon.
- ²⁰Ne + ⁴He \rightarrow ²⁴Mg • Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.

What is a supernova? Why massive star becomes a supernova

- In future double-shell burning massive star, hot enough to burn $3^{4}\text{He} \rightarrow {}^{12}\text{C}$
- When He exhausted, gravity wins, and core contracts.
- Temperature rises by larger amount b/c gravity is stronger.
- Temperature hot enough to burn carbon.
 ⁴He + ¹²C → ¹⁶O, etc

What is a supernova? Why massive star becomes a supernova

- Disaster with iron
 Burning releases energy
- Fusing iron takes up energy
- Gravity finally wins.
- Star collapses in few seconds
- Rebounds as supernova
 Reason for rebounding is
- Reason for rebounding is topic of current research
- Expel outer layers

What is left?

• Outer layers expelled into space. New stars may form.

• Core becomes

- Neutron star. One in Crab. Pulses every 1/30 s.
- Black hole
- · Neutron star
 - Normally
 - neutron \rightarrow proton+electron+neutrino+energy
 - · Pressure is so high that proton+electron+energy \rightarrow neutron+neutrino
 - · Whole star is like a big nucleus of neutrons.
 - Neutrons are degenerate
 - Star is size of Lansing

Making elements heavier than iron

- Lighter elements (He, O, C, Ne, Mg, etc) are made by fusion with a release of energy
 - $4H \rightarrow He + energy$
 - $3\text{He} \rightarrow \text{C} + \text{energy}$
- Fe+He \rightarrow (heavier element) requires energy. No go.

Neutron capture

- In a supernova, there are free neutrons made by destroying nuclei.
- Nucleus captures neutrons and turns into a heavier nucleus.
- Nucleus may decay into a more stable one.
- Nucleus may capture more neutrons.
- · Eventually unstable nuclei decay into stable ones. Some heavy as uranium

- Calculation of nuclear ٠ reactions in a supernova.
- Start with iron and add neutrons
- Look at gold • 79 protons, 197-79=118 neutrons

Questions on the Supernova Movie

.html

www.jinaweb.org/html/gallery3

- 1. What is the only element at the "R process movie" at start? How many neutrons does it have?
- 2. At what time did some gold form? Gold has 79 protons. Is this gold stable?
- 3. At the end of the calculation, how many protons does the nucleus with the most protons have?
- 4. What is the time at the end of the calculation?
- 5. Are the end products stable?

