Helium Formed When Universe Was 3 Minutes Old—27 Oct

- How & where were the elements made?
 - Carbon, Iron, Calcium in stars
 - Hydrogen is primordial
 - Helium is too abundant to have been made in stars.
 - Helium was made at 3min.
- Evidence: Observations of ^4He (and ^3He, ^7Li, ^2H)

Helium in the Sun

- ^4He mass = 67% Mostly made in BB in 3 min
- ^3He mass = 25% Mostly made in BB

- R1: $p + p \rightarrow ^4\text{He} + e^+ + \nu$ (10 Byr)
- R2: $^3\text{He} + p \rightarrow ^4\text{He}$ (6 Myr)

Key is to follow the neutrons

1. When hydrogen fuses to become helium in the sun, does the ratio n/p change?
 - Yes
 - The reactions in the sun
 - R1: $p + p \rightarrow ^4\text{He} + e^+ + \nu$ (10 Byr)
 - R2: $^3\text{He} + p \rightarrow ^4\text{He}$ (6 Myr)

1. For which reactions does n/p change?
 - A. R1 & R2
 - B. R1 only
 - C. R2 only
 - D. neither R1 nor R2

Helium Abundance is High

- Helium is much more abundant than every element but hydrogen
 - Abundance He = #He/#H
 - Abundance He = 1/12
 - Abundance O = 1/800
 - Abundance Au = 1/trillion
- Abundance of elements born in stars is 1/800 or less. Helium is born in BB.
Key is to follow the neutrons

• The reactions in the sun
 – R1: \(p + p \rightarrow \text{He}^4 + e^+ + \nu \) (10Byr)
 – R2: \(\text{H} + p \rightarrow \text{He}^3 \) (6s)
 – \(\text{He}^3 + \text{He} \rightarrow \text{He}^4 + 2p \) (1Myr)

1. For which reactions does \(\#n/\#p \) change? R1

• Reaction 1 takes a very long time because a neutrino & electron are produced.
• In Big Bang, the only possible reactions are ones that occur quickly.
• In BB, the ratio \(\#n/\#p \) is nearly preserved.

Follow the neutrons

• \(\#n/\#p = 2/14 = 1/7 \) now
• Processing in stars changes \(\#n/\#p \) slightly.
 – \(\#n/\#p \) in H and O
 – \(\#n/(800\#p+8\#p) = 1/101 \)
• \(\#n/\#p \) has been 1/7 from 3 min to now.
• \(\#n/\#p = 1 \) at 1 ms.
• How do neutrons change into protons?

Changing neutrons & protons

• Proton changes into neutron
 – \(p + e^- \rightarrow n + \nu + \text{energy} \)
 – \(E = 2\text{MeV} \)

• Neutron changes into proton
 – \(n + e^- \rightarrow p + \text{energy} + \nu \)
 – \(\text{happens spontaneously in 1000s} \)
 – \(\text{positron must hit neutron} \)
• 1 electron-Volt is the typical energy of a chemical reaction.
• \(1\text{eV} = 1.6 \times 10^{-19} \text{J} \)
• 1 MeV is the typical energy of a nuclear reaction.
• Radiation in the universe
 – 2.7K
 – \(E = \text{eV}/4000 \)
• At 3 min
 – 1 BK
 – \(E = 0.1\text{MeV} \)
• At 0.001s
 – 400 BK
 – \(E = 40 \text{MeV} \)

Key is to follow the neutrons

• In the outer parts of the sun, the material is nearly primordial.
• \(\text{He} \) is 25% of the mass, \(\text{H} \) is 75%. 12 H atoms for every He atom
 – Mass He = 4
 – Mass H = 12
 – Total mass = 16

1. \(\#n/\#p = \)
 a. 1:1
 b. 1:12
 c. 2:14
 d. 4:12
 e. 2:3
Changing neutrons & protons

• Proton changes into neutron
 - \(p + e^- + \text{energy} \to n + \nu \)
 - \(E = 2 \text{MeV} \)

• Neutron changes into proton
 - \(n + e^- \to p + e^- + \text{energy} \)
 - \(\nu \) (positron must hit neutron)
 - \(n \to p + e^- + \text{energy} \)
 - (happens spontaneously in 1000s)

- If average \(E = 40 \text{MeV} \)
 - \(p \to n \)
 - \(n \to p \)

- If average \(E = 1 \text{MeV} \)
 - \(p \to n \)
 - \(n \to p \)

- If temperature is too hot
 - \(E > 0.1 \text{MeV} \)
 - Deuterium gets broken apart.
 - \(^2\text{H} \) combines to form \(^4\text{He} \)

Neutrons/protons when deuterium forms

- \(^0\text{He} \) forms from \(n \) & \(p \)
 - \(p + n \leftrightarrow \text{deuterium + energy} \)
 - \(E = 0.1 \text{MeV} \)

- When temperature is too hot
 - \(E > 0.1 \text{MeV} \), deuterium gets broken apart.

- As universe cools
 - \(n \neq p \)
 - \#n/\#p drops.

- Neutrons in deuterium are safe; they no longer change into protons.

- \#n/\#p is a fossil from the universe at 3 min.