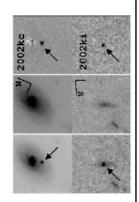
Weighing Univ.: Timing Expansion of Universe—21 Nov galaxy

Ast 207 F2008

- "Though a good deal is too strange to be believed, nothing is too strange to have happened." —Thomas Hardy
- How to weigh universe
 - Mass in a large sphere surrounding us pulls on a galaxy on the surface
 - Measure how much the galaxy slows.
 - Use supernovae
- What we will find: Galaxies speed up!
 "Dark energy" is repulsive whereas matter and radiation are attractive.

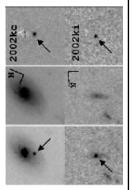
Distant supernovae Riess et al, 2004, ApJ 607, 665.

R

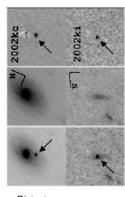

002kc

2002ki

Mus


- 1. With a higher mass density, the time for U to expand by a factor of two is <u>shorter</u>.
- A supernova in a galaxy emitted some light when the U was half of its present size. We see that light. By looking the supernova, how do we know the U was half its present size? In a universe with a higher mass density, the supernova will be ___.
 - A. brighter
 - B. same
 - C. fainter
- Ideas:
 - What makes SN brighter? It is closer.
 Flux = Luminosity / Distance².
 - What affects distance to SN?
 - If time for U to expand is shorter, distance is shorter.
 - Distance = time \times speed of light

Ast 207 F2008


Distant supernovae Riess et al, 2004, ApJ 607, 665.

- 1. With a higher mass density, the time for U to expand by a factor of two is <u>shorter</u>.
- 2. A supernova in a galaxy emitted some light when the U was half of its present size. We see that light. By looking the supernova, how do we know the U was half its present size? In a universe with a higher mass density, the supernova will be brighter.
- Ideas:
 - What makes SN brighter? It is Ast 207 F2008

Distant supernovae Riess et al, 2004, ApJ 607, 665.

- 1. With a higher mass density, the time for U to expand by a factor of two is <u>shorter</u>.
- 2. A supernova in a galaxy emitted some light when the U was half of its present size. (Expansion parameter is ½.) We see that light. In a universe with a higher mass density, the supernova will be <u>brighter</u>.
- 3. By looking at a supernova, how do we know the expansion parameter of the U when the SN emitted the light that we now see? What quantity do we need to measure?
- Ideas:
 - Expansion parameter a = (Distance between two objects) / (Distance at present time)
 - Amount the wavelength has shifted.
 - Redshift determines expansion parameter.

Distant supernovae Riess et al, 2004, ApJ 607, 665.

Ast 207 F2008

- 1. With a higher mass density, the time for U to expand by a factor of two is <u>shorter</u>.
- A supernova in a galaxy emitted some light when the U was half of its present size. (Expansion parameter is ½) We see that light. In a universe with a higher mass density, the supernova will be <u>brighter</u>.
- 3. By looking a supernova, how do we know the expansion parameter of the U when the SN emitted the light that we now see? What quantity do we need to measure? <u>Wavelength of light.</u>
 - Ideas:
 - Expansion parameter
 a = (Distance between two objects) / (Distance at present time)
 - Wavelength of light expands by the same factor as the universe.

Ast 207 F2008

Other ideas

M 2002ka M 2002ka M 2002ka

Distant supernovae Riess et al, 2004, ApJ 607, 665.

Observations 44 MLCS • Distant SN from Riess et al, 1998, ApJ 116, 1009. Nearby SN from 42 m-M (mag) several surveys. 40 2. On upper plot, nearest SN is at 38 a. upper right. Ω_u=0.24, Ω_s=0.76 b. lower left. Ω_M=0.20, Ω_A=0.00 26 For the most distant SN, the wavelength of light has increased by a factor of _____ since the SN emitted it. Ω_M=1.00, Ω_A=0.00 A. 1.00 compared to model with $\Omega = 0.2$ B. 0.5 0.5 C. 0.99 ∆(m-M) (mag). D. 0.01 64 E. 2 0.0 Ideas . Magnitudes are more positive for fainter SN. _ -0.5 - Expansion parameter $a = D/D_{now}$ Redshift a=1/(1+z) _ 0.01 0.10 1.00 $z=(\lambda -\lambda_{lab})/\,\lambda_{lab}.$ Ast 207 г∠υυο z a=0.99 a=0.9 a=0.5