Discovery of Dark Energy/Cosmological Constant — 3 Dec

- How do scientists make discoveries?
- Characteristics
 - New ideas
 - Einstein’s cosmological constant ca. 1920
 - New instruments
 - Large CCDs to search for SN
 - New wavelengths (NA)
 - Careful design
 - SN are clean, not messy.
 - Serendipity
 - Did not expect to find dark energy
 - Courage to make the measurement (NA)

In a fair sample with R=Moon’s orbit
Ordinary matter: 4%, 3oz
Dark matter: 27%, 1lb
Dark energy: 73%, 3 lb

Einstein’s General Relativity

- What causes gravity?
- Newton’s answer: mass.
 - Force of gravity between what’s in the sphere and test mass m
 \[F = G \frac{M m}{R^2} \]
- Einstein’s answer: mass and pressure
 - Force of gravity between what’s in the sphere and test mass m
 \[F = G \left(M + 3PV/c^2 \right) \frac{m}{R^2} \]

Grades

- Average on test 3: 24/40
 - Be certain to pick up both sheets of the answers.
- Provisional grades
 - Pick up sheet
 - Check that your grades have been recorded correctly.
 - A few late hwk will be graded by Fri.
 - I have a Hwk 8 and a Hwk 10 with no name.
 - Your grade may change significantly, because the Final Exam contributes 31% of the course grade.
 - You will be able to pull up missed homeworks.
 - Lowest 3 exercise and lowest homework grades have been dropped.
 - Average grade is 3.1.

Source of Gravity

- Einstein’s answer: mass and pressure
 \[F = G \left(M + 3PV/c^2 \right) \frac{m}{R^2} \]
- Newton’s Law of gravity
 \[F = G \frac{M m}{R^2} \]
- Einstein’s Law of gravity
 \[T = \begin{pmatrix} M/V & 0 & 0 & 0 \\ 0 & P_x/c^2 & 0 & 0 \\ 0 & 0 & P_y/c^2 & 0 \\ 0 & 0 & 0 & P_z/c^2 \end{pmatrix} \]
- Ordinary matter has little pressure because speed is much smaller than c.
 \[3PV/c^2 = M (v/c)^2 \]
- Radiation has positive pressure
 \[3PV/c^2 = M \]
 \[F = G 2M \frac{m}{R^2} \]
Cosmological Constant

• Einstein’s answer: mass and pressure
 Force: \[F = G \left(M + \frac{3}{c^2} P V \right) \frac{m}{R^2} \]
 – If on average the material is at rest, then \(T \) has 4 components. \(M + \frac{3}{c^2} P V \) is sum of the 4 terms on the diagonal of \(T \).

• Einstein in 1920s: My equations of gravity allow a special tensor. I called it a “cosmological constant”
 – \(T_{cc} \) has same mathematical properties as \(T_{\text{matter}} \) and \(T_{\text{rad}} \).
 – “What is not forbidden is mandatory.”
 – Pauli: “What is not forbidden is mandatory.”
 – Pressure does not push; pressure sucks.

1. Write the force of gravity for the case of the cosmological constant. (Watch the signs.)
 A. \(F = G \frac{M}{R^2} \)
 B. \(F = G \left(2M \right) \frac{m}{R^2} \)
 C. \(F = G \left(-2M \right) \frac{m}{R^2} \)

• Ideas:
 – Einstein tried to make his theory of gravity prevent expansion or contraction of the universe. The cosmological constant balances gravity of matter.
 – In 1929, Hubble discovered the expansion of the U. Einstein said the cosmological constant was his greatest blunder.
 – Had he lived to 1998, he would have called it his greatest discovery.