1. Summer is long and winter is short. More precisely, the length of time from the spring equinox in March to the fall equinox in September (186.4 days) is longer than the time from the fall equinox to the spring equinox (179.1 days). This fact is a consequence of the earth's elliptical orbit, the tilt of its axis, and the relationship between the tilt and the orbit. (Recall that the sun is north of the equator in summer and it is on the equator on the equinoxes.)
a. (6 pts.) Draw the earth's orbit and tilt that accounts for the longer summer.
b. (4 pts.) Explain why summer is longer than winter using the key features in your picture.
2. In another solar system, a planet orbits the star at a distance 1 AU with a period of 0.5 earthyears.
a. (2 pts.) Without doing any calculations, explain why the mass is greater or less than the sun's mass.
b. (5 pts.) Find the mass of the star. Express your answer in terms of the sun's mass.
c. (0 pts.) Could Kepler answer this question? (2 pts.) Explain your reasoning.
d. (0 pts.) Could Newton answer this question? (2 pts.) Explain your reasoning.
3. Halley's Comet has an orbital period of 76 years, and its eccentricity is 0.967 . Recall that the eccentricity is (distance between foci)/(major axis).
a. (6 pts.) How far from the sun does it get? Give your answer in AU. (You must explain how you found this from the information given.)
b. (2 pt.) How close to the sun does it get?

Ant 207 Hook 3
15 sector

1. The earth's orbit is slightly elliptical. The earth is closest to the sum in Jan. According to Kepler's $2^{\text {nd }}$ law, the earth moves fastest in Van and slowest in July.
Therefore the earth spends less tine in th part of its orbit where the northern hemin phase is tilted aroay from the sun.
2. a) The acceleration is proportional to dirtance/tine ${ }^{2}$. since Fth distance the hypothetical plane t mopes is the same as the eartli's. The tune is half tho earth's. There fore the acceleration in greater.
Because the force exerted by the star in proportional to the accelerations the force exerted by the hypothetical stan is greilu. its mas is greaten.

$$
1 / 2^{2}=\frac{M_{0}}{M} \quad M=4 M_{0}
$$

c, D) This required Newton's realization that K^{\prime} 's god lain involved the mans of the 1 tan.
$K^{\prime} \leq 3^{\text {rd }}$ law $=\quad P^{2}=R^{3} \quad 76^{2}=R^{3}$

$$
R=(5776)^{y_{3}^{\prime}}=17.9 \mathrm{Au}
$$

a) Farthest point is at

$$
(1+\varepsilon) R=1.967 R=35.3 \mathrm{AU}
$$

b) Closest point is at

$$
(1-\varepsilon) R=0.033 R=0.59 \mathrm{AU}
$$

