
PHYSICS 215 - Thermodynamics and Modern Physics

Practice Midterm Exam 1

- 1. Calculate the rate of energy loss by conduction (in Watts) through all sides of a cubical box of side L = 25 cm if five of the faces are made of stainless steel (thermal conductivity = 14.0 W/m.K) and the sixth is made of copper (thermal conductivity = 401. W/m.K). The thickness of each of the six faces is 2.0 cm. The temperature inside the cube is 77 °C and the temperature outside is 27 °C.
- 2. One mole of an ideal gas is taken through the cyclic process acba as shown in the figure.

- (a) What is the temperature at point a?
- (b) What is the work done by the gas in the cycle?
- (c) What is the change of internal energy in a cycle?
- (d) What is the net amount of heat added to the gas during the cycle?
- 3. In each cycle a Carnot engine absorbs 52 kJ of heat from a high-temperature reservoir and exhausts 36 kJ to a low-temperature reservoir.
 - (a) What is the work done per cycle?
 - (b) What is the engine's efficiency?
 - (c) If the temperature of the cold reservoir is 15°C, what is the temperature of the hot reservoir?
- What is the root-mean-square speed, v_{rms} , of Helium atoms in a gas of P = 2.5 atm, V = 0.5 liter, T = 27 °C? (The molar mass of Helium is 4.0 gm.)

PHYSICS 215 - Thermodynamics and Modern Physics

Fall 2007

Useful Constants: 1 calorie = 4.186 J

1 atmosphere = 1.01E5 Pa

Universal Gas Constant, R = 8.31 J/mol.K Boltzmann's constant, k = 1.38E-23 J/K

Stefan-Boltzmann constant, $\sigma = 5.67E-8 \text{ W/m}^2\text{K}^4$

Avogadro's number, $N_A = 6.02E23 \text{ mol}^{-1}$

Speed of light, c = 3.00E8 m/s

Charge of an electron, -e = -1.6E-19 C Planck's constant, h = 6.63E-34 J.s

Useful Formulae: $\Delta Q = mc\Delta T$ where m = mass, c = specific heat.

Heat conduction, $I = \Delta T/R$ in Watts where

 $R = thermal resistance = \Delta x/kA$ and

 Δx = thickness, A = area and k = thermal conductivity of the material.

 $P_{RAD} = \sigma \varepsilon A T^4$ where $\varepsilon = \text{emissivity and } A = \text{area.}$

 1^{st} Law of Thermodynamics: $\Delta Q = \Delta W + \Delta U$

Ideal gas law: PV = nRT

Work done, $\Delta W = \int PdV$

 $v_{rms} = \sqrt{(3RT/M)}$

Molar specific heats, $C_V = \Delta U/n\Delta T$, $C_P = C_V + R$, $\gamma = C_P/C_V$

Adiabatic ==> $\Delta Q = 0$, and $PV^{\gamma} = constant$.

Carnot engine efficiency, $\varepsilon_C = 1 - Q_C/Q_H = 1 - T_C/T_H$

Potential energy lost by a charge q in traversing a potential difference of V is U = qV

Wave relation: $v = v\lambda$

where v = velocity, v = frequency, $\lambda = wavelength$.