PHYSICS 215 - Thermodynamics and Modern Physics

Practice Midterm Exam 3

Name:		
PID:		
Problem #1		
Problem #2		
Problem #3		
Problem #4		
Extra Credit		
Total	/24	

I will attempt to avoid multiple jeopardy. Please help me by giving an algebraic symbol for the answer to each part if you use it in subsequent parts.

Useful Constants:	Avogadro's number, $N_A = 6.02E23 \text{ mol}^{-1}$ Speed of light, $c = 3.00E8 \text{ m/s}$ Charge of an electron, $-e = -1.6E-19 \text{ C}$ Mass of the electron, $m_e = 9.1E-31 \text{ kg} = 511 \text{ keV/c}^2 = 5.49E-4 \text{ u}$ Mass of the proton, $m_p = 1.67E-27 \text{ kg} = 938 \text{ MeV/c}^2 = 1.00728 \text{ u}$ Mass of the α particle, $m_\alpha = 3727.4 \text{ MeV/c}^2 = 4.00151 \text{ u}$ Planck's constant, $h = 6.63E-34 \text{ J.s} = 4.14E-15 \text{ eV.s}$ Planck's <u>reduced</u> constant, $h = h/2\pi = 1.05E-34 \text{ J.s} = 6.58E-16 \text{ eV.s}$ Compton Wavelength of the electron, $\lambda_c = h/m_ec = 2.4263E-12 \text{ m}$ The Bohr Magneton, $\mu_B = 5.79E-5 \text{ eV/T}$ Atomic mass unit, $u = 1.66E-27 \text{ kg} = 931.5 \text{ MeV/c}^2$			
Useful Formulae:	de Broglie wavelength: $\lambda = h/p$			
	Heisenberg Uncertainty Principle: $\Delta p_x \Delta x \ge \hbar/2$ $\Delta E \Delta t \ge \hbar/2$			
	Probability =	ψ^2	Normalization condition: $\int \psi^2 dx = 1$	
Infinite Square Well Potential in 1-dim:			$\psi = \sqrt{2/L} \sin(n\pi x/L) \qquad \qquad E_n = n^2 \pi^2 \hbar^2 / 2mL^2$	
Infinite Square Well Potential in 3-dims:		lims:	$E = \frac{\pi^2 \underline{h}^2}{2m} (n_1^2 / L_1^2 + n_2^2 / L_2^2 + n_3^2 / L_3^2)$	
Simple Harmonic Oscillator: $V = \frac{1}{2}kx^2$			$\omega^2 = k/m$ $E_n = (n+\frac{1}{2})\hbar\omega$	
Quantum number rel	ations: n>0	<i>l</i> <n< td=""><td>$\mathbf{L} = \sqrt{l(l+1)} \hbar \qquad \mathbf{m}_l \le l \qquad \mathbf{L}_z = \mathbf{m}_l \hbar$</td></n<>	$\mathbf{L} = \sqrt{l(l+1)} \hbar \qquad \mathbf{m}_l \le l \qquad \mathbf{L}_z = \mathbf{m}_l \hbar$	
		$S=\pm \frac{1}{2}$	$\mathbf{S} = \sqrt{s(s+1)} \hbar$	
$L = \begin{array}{c} S & P \\ 0 & 1 \end{array}$	D F 2 3	G 4	$\mathbf{J} = \mathbf{L} + \mathbf{S} \qquad \mathbf{j} = l \pm \mathbf{s}$ Spectroscopic Notation: $\mathbf{n}^{2s+1}\mathbf{L}_{\mathbf{j}}$	
Zeeman Effect: $V_B = -\mu \cdot B = \mu_B Bm_i$		$\mu_{\rm B} {\rm Bm}_l$	or $2\mu_BBm_s$	

Anomalous Zeeman Effect: $V_B = \mu_B Bgm_j$ where g = Landé g-factor = 1 + J(J+1)+S(S+1)-L(L+1)2J(J+1)

A useful integral: $\int \sin^2 a\theta \ d\theta = \theta/2a - \sin 2a\theta /4a$

1. [6 points] Consider an electron trapped in a three dimensional rectangular infinite potential well with sides of length $L_1 = L$, $L_2 = L$ and $L_3 = 2L$.

(a) What is the ratio of the energy of the **first excited state** relative to the **ground state**?

- (b) What is the ratio of the energy of the second excited state relative to the ground state?
- (c) What is the ratio of the energy of the **third excited state** relative to the **ground state**?
- (d) Which of these energy levels are degenerate?
- (e) If L = 1 nm, what is the energy of the ground state in electron volts?

- 2. [5 points] For an electron in the 3d state of atomic hydrogen,
- (a) What is orbital angular momentum quantum number, *l*?
- (b) What is the magnitude of the orbital angular momentum vector, \mathbf{L} , in units of \hbar ?
- (c) Sketch all possible orientations of the orbital angular momentum vector, L.

(d) What is the minimum angle between L and the z axis?

- **3.** [7 points] Consider an atom in the $3^2P_{3/2}$ state.
- (a) What is the principal quantum number, n?
- (b) What is the orbital angular momentum quantum number, L?
- (c) What is the value of the spin quantum number, S?
- (d) What is the multiplicity of the state?

If the atom is placed in a magnetic field of 0.65 T,

- (e) Into how many levels will the original energy level be split?
- (f) What is the energy difference between adjacent levels?

4. [6 points] Identify the particle, x, in the following nuclear interactions:-

(a)
$$\mathbf{x} + {}^{14}N_7 \rightarrow {}^{17}O_8 + \mathbf{p}$$

- **(b)** $\alpha + {}^{9}\text{Be}_{4} \rightarrow {}^{12}\text{C}_{6} + \mathbf{x}$
- (c) $\alpha + {}^{197}Au_{79} \rightarrow {}^{200}Hg_{80} + \mathbf{x}$
- (d) $\mathbf{x} + {}^{7}\mathrm{Li}_{3} \rightarrow {}^{7}\mathrm{Be}_{4} + \mathbf{n}$
- (e) $n + {}^{30}Si_{14} \rightarrow {}^{31}P_{15} + x$
- (f) $p + {}^7Li_3 \rightarrow x + x$