1.	Thermodynamics Chapters 19, 20, 21 (HRW) Relativity Chapter 2	Conduction Radiation P-V Diagrams 1 st Law of TD Engines Entropy F-L Contraction Time Dilation Addition of Velocities Rel. Doppler Rel. Kinematics	PMT1.1, PF1 H1-19.62 MT1.3, PMT1.2 MT1.2, PF2 PMT1.3 H3-21.3 MT2.1 PMT2.1 PF3 H5-2.51 MT2.2
3.	Photons Chapters 1, 3, 5	X-rays Photoelectric Effect Compton Scattering De Broglie Bragg scattering	H6-3.43 MT2.3, PF4 PMT2.2 PMT2.4 H8-5.3
4.	Quantum Theory Chapters 5, 6	Planck Heisenberg Schrödinger Square Well MT3 Simple Harm. Osc. Pot. barriers, Tunneling	H6-3.33 MT3.1 H9-6.5 .2, PMT3.1, PF5 H9-6.37 H9-6.39
5.	Atomic Theory Chapters 4, 7, 8	Bohr Rutherford Atomic Q numbers Zeeman effect J = L+S, spect. Notation Anom. Zeeman effect	H7-4.23 MT2.4, PMT2.3 PMT3.2 MT3.3 MT3.4 PMT3.3
6.	Nuclear Properties Chapter 12	Nuclear composition Binding energy Sizes and shapes Radioactive decay Half lives	H12-12.4 H12-12.17 H12-12.8 H12-12.50 PF7
7.	Nuclear Reactions Chapter 13	Reactions Q-values Fission Fusion	PMT3.4 PF6 H13-13.30
8.	Elementary Particles Chapter 14	Fundamental forces Particle classification Quark structure	PF8

Useful Constants:

1 calorie = 4.186 JLatent heat of vaporization of water = 539 cal/g = 2256 kJ/kgLatent heat of fusion of water = 79.5 cal/g = 333 kJ/kgSpecific heat of water = 1 cal/g = 4.19 kJ/kg1 atmosphere = 1.01E5 Pa Universal Gas Constant, R = 8.31 J/mol.KBoltzmann's constant, k = 1.38E-23 J/KStefan-Boltzmann constant, $\sigma = 5.67\text{E-8 W/m}^2\text{K}^4$ Avogadro's number, $N_A = 6.02E23 \text{ mol}^{-1}$ Coulomb's constant, $(1/4\pi\epsilon_0) = 8.99E9 \text{ N.m}^2/\text{C}^2$ Speed of light, c = 3.00E8 m/sCharge of an electron, -e = -1.6E-19 C Mass of the electron, $m_e = 9.1E-31 \text{ kg} = 511 \text{ keV/c}^2 = 5.49E-4 \text{ u}$ Mass of the proton, $m_p = 1.67E-27 \text{ kg} = 938.3 \text{ MeV/c}^2 = 1.00728 \text{ u}$ Mass of the neutron, $\dot{m}_n = 1.675E-27$ kg = 939.6 MeV/c² = 1.00866 u Mass of the α particle, $m_{\alpha} = 3727.4 \text{ MeV/c}^2 = 4.00151 \text{ u}$ Planck's constant, h = 6.63E-34 J.s = 4.14E-15 eV.sPlanck's reduced constant, $\hbar = h/2\pi = 1.05E-34$ J.s = 6.58E-16 eV.s Compton Wavelength of the electron, $\lambda_c = h/m_ec = 2.4263E-12$ m The Bohr Magneton, $\mu_B = 5.79E-5 \text{ eV/T}$ Atomic mass unit, $u = 1.66E-27 \text{ kg} = 931.5 \text{ MeV/c}^2$ 1 Curie = 3.7E10 Bg

Useful Formulae

 $\Delta Q = mc\Delta T$ where m = mass, c = specific heat. Heat conduction, I = $\Delta T/R$ in Watts where R = thermal resistance = $\Delta x/kA$ and Δx = thickness, A = area and k = thermal conductivity of the material.

 $\begin{array}{ll} P_{RAD} = \sigma \epsilon A T^4 \mbox{ where } \epsilon = emissivity \mbox{ and } A = area. \\ 1^{st} \mbox{ Law of Thermodynamics: } & \Delta Q = \Delta W + \Delta U \\ Ideal \mbox{ gas law: } PV = nRT & Work \mbox{ done, } \Delta W = \int PdV & v_{rms} = \sqrt{(3RT/M)} \\ Molar \mbox{ specific heats: } & C_V = \Delta U/n\Delta T & C_P = \Delta Q/n\Delta T & C_P = C_V + R & \gamma = C_P/C_V \\ Adiabatic ==> & \Delta Q = 0, \mbox{ and } PV^{\gamma} = \mbox{ constant. } & Entropy \mbox{ change: } \Delta S = \int dQ/T \\ Carnot \mbox{ engine efficiency, } \epsilon_C = 1 - Q_C/Q_H = 1 - T_C/T_H \end{array}$

Pot. energy lost by a charge q in a potential difference of V is U = qVWave relation: $v = v\lambda$ where v = velocity, v = frequency, $\lambda =$ wavelength.

 $\beta = v/c$ $\gamma = 1/\sqrt{(1 - \beta^2)}$ Length Contr.: L' = L/ γ Time Dilation, T' = γ T

Addition of Velocities:
$$\mathbf{v}' = (\mathbf{v} + \mathbf{u})/(1 + \mathbf{vu/c}^2)$$

Rel. Doppler Effect: $\mathbf{v}' = \frac{\sqrt{(1 - \beta)}}{\sqrt{(1 + \beta)}} \mathbf{v}$
Momentum – Energy relations: $\mathbf{E}^2 = \mathbf{p}^2 \mathbf{c}^2 + \mathbf{m}^2 \mathbf{c}^4$
 $\mathbf{E} = \gamma \mathbf{mc}^2 \quad \mathbf{p} = \gamma \mathbf{mv} \quad \mathbf{K} = \mathbf{E} - \mathbf{mc}^2$

Planck's Relation:E = hvEinstein's Photoelectric Law: $hv = K + \phi$ Compton Effect: $\Delta \lambda = \lambda' - \lambda = (1 - \cos \theta)h/m_ec$

Elec. potential at a distance R from a charge Q: $V = (1/4\pi\epsilon_0)Q/R$

Bohr Quantization Relation: $L = mvr = n\hbar$

Atomic Radii: $r_n = n^2 a_0/Z$ Atomic Energies: $E_n = -Z^2 E_0/n^2$ where $a_0 = 5.29E-11$ mwhere $E_0 = 13.6$ eV

Impact parameter: $b = \frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 K} \cot(\theta/2)$ $n = \rho N_A/A$

Fraction of α 's scattered through θ or greater: $f = \pi b^2 nt$

Rutherford Scattering: $N(\theta) = \frac{N_i n t e^4 Z_1^2 Z_2^2}{16 (4\pi\epsilon_0)^2 r^2 K^2 \sin^4(\theta/2)}$

de Broglie wavelength: $\lambda = h/p$ Bragg's Law: $n\lambda = 2d\sin\theta$ Heisenberg Uncertainty Principle: $\Delta p_x \Delta x \ge \hbar/2$ $\Delta E\Delta t \ge \hbar/2$ Probability = ψ^2 Normalization condition: $\int \psi^2 dx = 1$ Infinite Square Well Pot. in 1-dim: $\psi = \sqrt{2}/L \sin(n\pi x/L)$ $E_n = n^2 \pi^2 \hbar^2/2mL^2$ Infinite Square Well Pot. in 3-dims: $E = \frac{\pi^2 \hbar^2}{2m} (n_1^2/L_1^2 + n_2^2/L_2^2 + n_3^2/L_3^2)$ Simple Harmonic Oscillator: $V = \frac{1}{2}kx^2 \omega^2 = k/m$ $E_n = (n+\frac{1}{2})\hbar\omega$ Q number relations: n > 0 l < n $L = \sqrt{l(l+1)}\hbar$ $|m_l| \le l$ $L_z = m_l\hbar$ $s = \pm \frac{1}{2}$ $S = \sqrt{s(s+1)}\hbar$ J = L + S $j = l \pm s$

SPDFGSpectroscopic Notation: $n^{2s+1}L_j$ L = 01234

Zeeman Effect: $V_B = -\mu . B = \mu_B Bm_l$ or $2\mu_B Bm_s$

Anomalous Zeeman Effect: $V_B = \mu_B Bgm_j$ where g = Landé g-factor = 1 + J(J+1)+S(S+1)-L(L+1)2J(J+1)

Radioactive decay law: $N = N_0 e^{-\lambda t}$ with $t_{1/2} = 0.693/\lambda$

Activity: $R = \lambda N$ 1 Becquerel (Bq) = 1 decay/s

Q-value: $Q = (M_X + M_X - M_V - M_Y)c^2$