1. Thermodynamics

Chapters 19, 20, 21 (HRW)
2. Relativity

Chapter 2
3. Photons

Chapters 1, 3, 5
4. Quantum Theory

Chapters 5, 6
5. Atomic Theory

Chapters 4, 7, 8
6. Nuclear Properties

Chapter 12
7. Nuclear Reactions

Chapter 13

Conduction
Radiation
P-V Diagrams
$1^{\text {st }}$ Law of TD
Engines
Entropy
F-L Contraction
Time Dilation
Addition of Velocities
Rel. Doppler
Rel. Kinematics
X-rays
Photoelectric Effect
Compton Scattering
De Broglie
Bragg scattering
Planck
Heisenberg
Schrödinger
Square Well
Simple Harm. Osc.
Pot. barriers, Tunneling
Bohr
Rutherford
Atomic Q numbers
Zeeman effect
J = L+S, spect. Notation
Anom. Zeeman effect
Nuclear composition
Binding energy
Sizes and shapes
Radioactive decay
Half lives
Reactions
Q-values
Fission
Fusion

PMT1.1, PF1
H1-19.62
MT1.3, PMT1.2
MT1.2, PF2
PMT1.3
H3-21.3
MT2.1
PMT2.1
PF3
H5-2.51
MT2.2
H6-3.43
MT2.3, PF4
PMT2.2
PMT2.4
H8-5.3
H6-3.33
MT3.1
H9-6.5
MT3.2, PMT3.1, PF5
H9-6.37
H9-6.39
H7-4.23
MT2.4, PMT2.3
PMT3.2
MT3.3
MT3.4
PMT3.3
H12-12.4
H12-12.17
H12-12.8
H12-12.50
PF7
PMT3.4
PF6
H13-13.30

Fundamental forces
Particle classification
PF8

Useful Constants:

1 calorie $=4.186 \mathrm{~J}$
Latent heat of vaporization of water $=539 \mathrm{cal} / \mathrm{g}=2256 \mathrm{~kJ} / \mathrm{kg}$
Latent heat of fusion of water $=79.5 \mathrm{cal} / \mathrm{g}=333 \mathrm{~kJ} / \mathrm{kg}$
Specific heat of water $=1 \mathrm{cal} / \mathrm{g}=4.19 \mathrm{~kJ} / \mathrm{kg}$
1 atmosphere $=1.01 \mathrm{E} 5 \mathrm{~Pa}$
Universal Gas Constant, $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
Boltzmann's constant, $\mathrm{k}=1.38 \mathrm{E}-23 \mathrm{~J} / \mathrm{K}$
Stefan-Boltzmann constant, $\sigma=5.67 \mathrm{E}-8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Avogadro's number, $\mathrm{N}_{\mathrm{A}}=6.02 \mathrm{E} 23 \mathrm{~mol}^{-1}$
Coulomb's constant, $\left(1 / 4 \pi \varepsilon_{0}\right)=8.99 \mathrm{E} 9 \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$
Speed of light, $c=3.00 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
Charge of an electron, $-\mathrm{e}=-1.6 \mathrm{E}-19 \mathrm{C}$
Mass of the ellectron, $\mathrm{m}_{\mathrm{e}}=9.1 \mathrm{E}-31 \mathrm{~kg}=511 \mathrm{keV} / \mathrm{c}^{2}=5.49 \mathrm{E}-4 \mathrm{u}$
Mass of the proton, $\mathrm{m}_{\mathrm{p}}=1.67 \mathrm{E}-27 \mathrm{~kg}=938.3 \mathrm{MeV} / \mathrm{c}^{2}=1.00728 \mathrm{u}$
Mass of the neutron, $\mathrm{m}_{\mathrm{n}}=1.675 \mathrm{E}-27 \mathrm{~kg}=939.6 \mathrm{MeV} / \mathrm{c}^{2}=1.00866 \mathrm{u}$
Mass of the α particle, $\mathrm{m}_{\alpha}=3727.4 \mathrm{MeV} / \mathrm{c}^{2}=4.00151 \mathrm{u}$
Planck's constant, $\mathrm{h}=6.63 \mathrm{E}-34 \mathrm{~J} . \mathrm{s}=4.14 \mathrm{E}-15 \mathrm{eV} . \mathrm{s}$
Planck's reduced constant, $\hbar=\mathrm{h} / 2 \pi=1.05 \mathrm{E}-34 \mathrm{~J} . \mathrm{s}=6.58 \mathrm{E}-16 \mathrm{eV} . \mathrm{s}$
Compton Wavelength of the electron, $\lambda_{c}=h / m_{e} c=2.4263 E-12 ~ m$
The Bohr Magneton, $\mu_{B}=5.79 \mathrm{E}-5 \mathrm{eV} / \mathrm{T}$
Atomic mass unit, $\mathrm{u}=1.66 \mathrm{E}-27 \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
1 Curie $=3.7 \mathrm{E} 10 \mathrm{~Bq}$

Useful Formulae

$\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$ where $\mathrm{m}=$ mass, $\mathrm{c}=$ specific heat.
Heat conduction, $I=\Delta T / R$ in Watts where $R=$ thermal resistance $=\Delta x / k A$ and $\Delta \mathrm{x}=$ thickness, $\mathrm{A}=$ area and $\mathrm{k}=$ thermal conductivity of the material.
$\mathrm{P}_{\mathrm{RAD}}=\sigma \varepsilon \mathrm{AT}^{4}$ where $\varepsilon=$ emissivity and $\mathrm{A}=$ area.
$1^{\text {st }}$ Law of Thermodynamics: $\quad \Delta \mathrm{Q}=\Delta \mathrm{W}+\Delta \mathrm{U}$
Ideal gas law: $\quad \mathrm{PV}=\mathrm{nRT} \quad$ Work done, $\Delta \mathrm{W}=\int \mathrm{PdV} \quad \mathrm{V}_{\mathrm{rms}}=\sqrt{ }(3 \mathrm{RT} / \mathrm{M})$ Molar specific heats: $\mathrm{C}_{\mathrm{V}}=\Delta \mathrm{U} / \mathrm{n} \Delta \mathrm{T} \quad \mathrm{C}_{\mathrm{P}}=\Delta \mathrm{Q} / \mathrm{n} \Delta \mathrm{T} \quad \mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R} \quad \gamma=\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$ Adiabatic $=\Rightarrow \Delta \mathrm{Q}=0$, and $\mathrm{PV}^{\gamma}=$ constant. Entropy change: $\Delta \mathrm{S}=\int \mathrm{dQ} / \mathrm{T}$ Carnot engine efficiency, $\varepsilon_{\mathrm{C}}=1-\mathrm{Q}_{\mathrm{C}} / \mathrm{Q}_{\mathrm{H}}=1-\mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{H}}$

Pot. energy lost by a charge q in a potential difference of \mathbf{V} is $\mathbf{U}=\mathbf{q V}$ Wave relation: $v=v \lambda$ where $v=$ velocity, $v=$ frequency, $\lambda=$ wavelength.
$\beta=\mathrm{v} / \mathrm{c} \quad \gamma=1 / \sqrt{ }\left(1-\beta^{2}\right)$ Length Contr.: $\mathrm{L}^{\prime}=\mathrm{L} / \gamma \quad$ Time Dilation, $\mathrm{T}^{\prime}=\gamma \mathrm{T}$
Addition of Velocities: $v^{\prime}=(v+u) /\left(1+v u / c^{2}\right)$

$$
\text { Rel. Doppler Effect: } \quad v^{\prime}=\frac{\sqrt{ }(1-\beta)}{\sqrt{ }(1+\beta)} v
$$

Momentum - Energy relations: $\quad \mathbf{E}^{2}=\mathbf{p}^{2} \mathbf{c}^{2}+\mathbf{m}^{2} \mathbf{c}^{4}$

$$
\mathbf{E}=\gamma \mathbf{m c}^{2} \quad \mathbf{p}=\gamma \mathbf{m v} \quad \mathrm{K}=\mathbf{E}-\mathrm{mc}^{2}
$$

Planck's Relation: $\mathbf{E}=\mathbf{h} \nu$ Einstein's Photoelectric Law: $\mathbf{h} \boldsymbol{\nu}=\mathbf{K}+\phi$ Compton Effect: $\quad \Delta \lambda=\lambda^{\prime}-\lambda=(1-\cos \theta) h / m_{e} \mathbf{c}$

Elec. potential at a distance R from a charge $Q: \quad V=\left(1 / 4 \pi \varepsilon_{0}\right) Q / R$
Bohr Quantization Relation: $\mathbf{L}=\mathbf{m v r}=\mathbf{n} \hbar$
Atomic Radii: $r_{n}=\mathbf{n}^{2} \mathbf{a}_{0} / \mathbf{Z} \quad$ Atomic Energies: $\quad \mathbf{E}_{\mathrm{n}}=-\mathbf{Z}^{2} \mathbf{E}_{0} / \mathbf{n}^{2}$ where $\mathrm{a}_{0}=5.29 \mathrm{E}-11 \mathrm{~m}$

Impact parameter: $\quad \mathbf{b}=\frac{\underline{Z}_{1} \underline{Z}_{2} \underline{e}^{2}}{8 \pi \varepsilon_{0} K} \cot (\theta / 2)$ $\mathbf{n}=\rho \mathbf{N}_{\mathrm{A}} / \mathbf{A}$

Fraction of α 's scattered through θ or greater: $\quad f=\pi b^{2} n t$
Rutherford Scattering:

$$
N(\theta)=\frac{\mathbf{N}_{i} n t e^{4} Z_{1}^{2} \underline{Z}_{2}^{2}}{16\left(4 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2} \sin ^{4}(\theta / 2)}
$$

de Broglie wavelength: $\lambda=\mathbf{h} / \mathbf{p} \quad$ Bragg's Law: $\quad \mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$

Heisenberg Uncertainty Principle: $\quad \Delta \mathrm{p}_{\mathrm{x}} \Delta \mathrm{x} \geq \hbar / 2 \quad \Delta \mathrm{E} \Delta \mathrm{t} \geq \hbar / 2$
Probability $=\psi^{2}$ Normalization condition: $\int \psi^{2} \mathrm{dx}=1$
Infinite Square Well Pot. in 1-dim: $\psi=\sqrt{2} / \mathrm{L} \sin (\mathrm{n} \pi x / L) \quad \mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2} \pi^{2} \hbar^{2} / 2 \mathrm{~mL}^{2}$
Infinite Square Well Pot. in 3-dims: $\quad E=\underline{\pi}^{2} \underline{\hbar}^{2}\left(n_{1}{ }^{2} / L_{1}{ }^{2}+n_{2}{ }^{2} / L_{2}{ }^{2}+n_{3}{ }^{2} / L_{3}{ }^{2}\right)$ 2m
Simple Harmonic Oscillator: $\quad \mathrm{V}=1 / 2 \mathrm{kx}^{2} \quad \omega^{2}=\mathrm{k} / \mathrm{m} \quad \mathrm{E}_{\mathrm{n}}=(\mathrm{n}+1 / 2) \hbar \omega$
Q number relations: $\mathbf{n}>0 \quad l<\mathbf{n} \quad L=\sqrt{ } l(l+1) \hbar \quad\left|\mathbf{m}_{l}\right| \leq l \quad \mathbf{L}_{\mathrm{z}}=\mathrm{m}_{l} \hbar$

$$
\mathbf{s}= \pm 1 / 2 \quad \mathbf{S}=\sqrt{ } \mathbf{s}(\mathbf{s}+\mathbf{1}) \boldsymbol{\hbar} \quad \mathbf{J}=\mathbf{L}+\mathbf{S} \quad \mathbf{j}=l \pm \mathbf{s}
$$

$\mathbf{L}=\begin{array}{lllllll}\text { S } & \text { P } & \mathbf{D} & \mathbf{F} & \mathbf{G} & \text { Spectroscopic Notation: } & n^{2 s+1} L_{j} \\ \mathbf{0} & 1 & 2 & 3 & 4 & \end{array}$
Zeeman Effect: $V_{B}=-\mu . B=\mu_{\mathrm{B}} \mathrm{Bm}_{l}$ or $2 \mu_{\mathrm{B}} \mathrm{Bm}_{\mathrm{S}}$
Anomalous Zeeman Effect: $\quad V_{B}=\mu_{B} B \mathrm{Bm}_{\mathrm{j}}$

$$
\text { where } g=\text { Landé } g \text {-factor }=1+\frac{\mathrm{J}(\mathrm{~J}+1)+\mathrm{S}(\mathrm{~S}+1)-\mathrm{L}(\mathrm{~L}+1)}{2 \mathrm{~J}(\mathrm{~J}+1)}
$$

Radioactive decay law: $\quad \mathrm{N}=\mathrm{N}_{\mathrm{O}} \mathrm{e}^{-\lambda \mathrm{t}} \quad$ with $\mathrm{t}_{1 / 2}=0.693 / \lambda$
Activity: $\mathrm{R}=\lambda \mathrm{N} \quad 1$ Becquerel $(\mathrm{Bq})=1$ decay $/ \mathrm{s}$
Q-value: $\quad \mathrm{Q}=\left(\mathrm{M}_{\mathrm{X}}+\mathrm{M}_{\mathrm{X}}-\mathrm{M}_{\mathrm{y}}-\mathrm{M}_{\mathrm{Y}}\right) \mathrm{c}^{2}$

