Classical Physics

- at end of the $19^{\text {th }}$ century:
- Mechanics - Newton's Laws
- Electromagnetism - Maxwell's Eqns
- Optics - Geometric (particles) vs. Physical (waves)
- Thermodynamics - Four Laws (0-3)
- Gas Laws - Kinetic Theory
- overlaps often led to important discoveries:
- Maxwell's Eqns \rightarrow EM radiation
(optics)
- Newton's laws / kinetic theory
microscopic/atomic description of macroscopic gas laws
- around 1900, Theoretical problems:

1) What is EM medium?
\rightarrow Relativity
2) Blackbody Radiation
\rightarrow Quantum Physics

- Experimental discoveries:

But first...

Heat and Thermodynamics

- study of Thermal Energy of systems

Temperature: a measure of thermal energy, units of Kelvins

$$
\text { Room Temp ~ } 290 \text { K }
$$

Temperature of an object is measured by the change in some physical property.

Measuring device is called a thermometer.

Zeroth Law of

Thermodynamics

If bodies A and B are each in thermal equilibrium with a third body T, then they are in thermal equilibrium with each other.

Thermal equilibrium: all measureable properties unchanging.

Objects in thermal equilibrium are at the same temperature.

Temperature Scales

-Daniel Fahrenheit (1686-1736)

$$
\begin{aligned}
& 0^{\circ} \mathrm{F}=\text { mixture of ice, water, salt } \\
& 100^{\circ} \mathrm{F}=\text { Human body temp }\left(\sim 98.6^{\circ} \mathrm{F}\right)
\end{aligned}
$$

- Anders Celsius (1701-1744)

$$
\begin{aligned}
& 0^{\circ} \mathrm{C}=\text { Freezing point of } \mathrm{H}_{2} \mathrm{O} \\
& 100^{\circ} \mathrm{C}=\text { Boiling point of } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

-Lord Kelvin (1824-1907)
$\mathrm{H}_{2} \mathrm{O}$ boil :
$100^{\circ} \mathrm{C}=212^{\circ} \mathrm{F}=373 \mathrm{~K}$
$\mathrm{H}_{2} \mathrm{O}$ freeze :
$0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}=273 \mathrm{~K}$
Absolute zero: $-273^{\circ} \mathrm{C}=-460^{\circ} \mathrm{F}=0 \mathrm{~K}$

$$
T_{C}=T_{K}-273.15
$$

$$
T_{F}=(9 / 5) T_{C}+32
$$

Constant-Volume Gas Thermometer

\square measure pressure of gas at fixed volume

Pressure $=$ Force $/$ Area $\quad\left(N / m^{2}=P a\right)$
(Pascals)

$$
\begin{aligned}
1 \mathrm{~atm} & =1.01 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{lb} / \mathrm{in}^{2} \\
& =760 \mathrm{~mm} \text { of } \mathrm{Hg}=760 \text { torr }
\end{aligned}
$$

T P at fixed V

Ideal-Gas Temperature

$T_{k}=$ (constant) $\times P$ at fixed V
-Need one point:
Triple point of $\mathrm{H}_{2} \mathrm{O}$
(ice/water/steam coexist)
$T_{3}=273.16 \mathrm{~K}$
-Problem: different gases give different T

But as mass of gas reduced ($\mathrm{m} \square 0$) and $P_{3} \square 0$, they agree (approach "ideal" gas)

Temperature and Heat

If system S and environment E are At different temperatures:

Energy will transfer until their temperatures become equal.

The transferred energy is called Heat (symbol Q).

$$
\begin{aligned}
& T_{E}>T_{S}, Q>0 \\
& \text { Heat absorbed by } S
\end{aligned}
$$

$$
\begin{aligned}
& T_{S}>T_{E}, Q<0 \\
& \text { Heat lost by } S
\end{aligned}
$$

Defn: Require $\square Q=1$ calorie to raise 1 gm of $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{T}=1^{\circ} \mathrm{C}$.

1 calorie $=4.186$ joules
(heat is a form of energy)

Specific Heat

Amount of heat needed to raise the temperature of m grams of a substance by $\square T$ is

$$
\square Q=c m \square T
$$

where c is the specific heat (coals $/{ }^{\circ}{ }^{\circ} \mathrm{C}$)
Specific heat of water $=1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

$$
=4186 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

Molar Specific Heat

Can specify amount of substance in moles:

$$
\begin{aligned}
1 \text { mole } & =6.02 \times 10^{23} \text { units } \\
& =N_{A} \text { units (Avogadro's number) }
\end{aligned}
$$

(1 mole of $\mathrm{Al}=6.02 \times 10^{23}$ atoms
1 mole of $\mathrm{CO}_{2}=6.02 \times 10^{23}$ molecules)
The mass of a substance (in grams) is
$m=n A$
where $n=(\#$ moles $)$ and
A is the atomic (molecular) weight of the substance.

1 mole of Carbon-12 has $m=12$ grams.

Some Examples:

Element	Spec. Heat $(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})$	\underline{A}	$\frac{\text { Mol. Sp. } \mathrm{Ht} .}{(\mathrm{J} / \text { Mole } \cdot \mathrm{K})}$
Lead	128	207	26.5
Tungsten	134	184	24.8
Silver	236	108	25.5
Copper	386	63.5	24.5
Aluminum	900	27	24.4
Note the relative consistency			

$$
\square Q=n C \square T
$$

Heats of Transformation

Heat may also change the phase (or state) of a substance (at constant T).

Matter exists in 3 common states:

- Solid
- Liquid
- Gas (or vapor)

Amount of energy/unit mass is
Heat of transformation, L.
e.g. for water:

Heat of fusion
$L_{F}=79.5 \mathrm{cal} / \mathrm{g}=333 \mathrm{~kJ} / \mathrm{kg}=6.01 \mathrm{~kJ} / \mathrm{mole}$

Heat of vaporization
$L_{V}=539 \mathrm{cal} / \mathrm{g}=2256 \mathrm{~kJ} / \mathrm{kg}=40.7 \mathrm{~kJ} / \mathrm{mole}$

Heat and Work

Consider this system:

Pressure $=$ Force $/$ Area $\quad(P=F / A)$
If piston moves ids, then work done by the gas:
$d W=F d s=P A d s=P d V$
Total work done by the gas in moving from V_{i} to V_{f} :
$\square W=\int_{V_{i}}^{V_{f}} P d V$

P-V Diagrams

Study effects of heat added/work done by plotting P vs V of gas:

The area under the curve is the work done.
$V_{i} \quad V_{f} \quad V$
The work done depends on the specific path from ito f.

V_{i}

$V_{i} \quad V_{f}$
B

Thermodynamic Cycles

V
If volume decreases, the work done (by the gas) is negative.

If we go from i $\square f$ and back to i, the net work done by the gas is the area inside the curve.

V

+ work
- work

First Law of
 Thermodynamics

Heat $\square Q$ added to the system can have two effects:

- Increase the internal energy of the system
- Cause the gas to do work

Conservation of Energy says:

$$
\square Q=\square U+\square W
$$

where
U is the internal energy of the system.
[$1^{\text {st }}$ Law of Thermodynamics.

State Functions

A property of the state of the system is often called a "State Function".
P, V, and T are state functions.
So is U (the internal energy).
Heat and Work are not.
They are path-dependent, i.e. they depend on how we go from i to f.

However the combination
$\square Q-\square W=\square U$ does not depend on the path.

Various System Changes

Constant Volume (isochoric)

Constant Temp (isothermal)

Constant Pressure
(isobaric)

Constant Heat (adiabatic)

Cyclical Process (returns to original state)

All previous cases are "quasi-static":
Change occurs slow enough that thermal equilibrium can be considered true at all times.

A non-quasi-static process:
Adiabatic, free expansion:

$\square Q=0$ (adiabatic)
$\quad \mathrm{W}=0$ (nothing to work against)
$\square \square U=0$

Heat Transfer Mechanisms

How does heat exchange occur?
-Conduction
-Convection
-Radiation

Conduction

- Occurs in systems where atoms stay in a fixed region.
- Heat energy causes them to move, rotate, and/or vibrate.
- Energy is transferred to adjacent atoms by interactions/collisions.

Energy moves, not the atoms

Heat conduction rate is
$P_{\text {cold }}=\square Q / \square t=\square A \square T / \square x$

- $\square T / \square x=\left(T_{H}-T_{C}\right) / \square x$ is the Temperature gradient.
- $P_{\text {cond }}$ is the Energy transferred per time (SI units: Watts), sometimes called thermal current, I.
- \square is the Thermal Conductivity (SI units: Watts /mK).

Some Thermal Conductivities

Silver
Copper
Aluminum
Lead
Stainless Steel

Hydrogen
Helium
Dry Air
Window Glass
White Pine
Fiberglass
Polyurethane Foam
$428 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
402
235
35
14
0.18
0.15
0.026
1.0
0.11
0.048
0.024

Copper 401

Brass
 ~70

Aluminum 235

Nickel
~ 92
German Silver (Copper/Zinc/Nickel) ~ 42

Iron
~ 84

Using the notation I for $P_{\text {cond }}$,

$$
\square T=I \square \times /(k A)
$$

or

$$
\square T=I R
$$

where $R=\square x /(k A)$ is
the thermal resistance.

Note analogy with Ohm's Law for electricity.

Two or more conductors (or insulators) in series:

Steady state \square thermal current is same through both slabs

$$
\begin{aligned}
& T_{H}-T_{I}=I R_{1} \\
& T_{I}-T_{C}=I R_{2}
\end{aligned}
$$

$$
T_{H}-T_{C}=I\left(R_{1}+R_{2}\right)=I R_{\text {equiv }}
$$

where

$$
R_{\text {equiv }}=R_{1}+R_{2}+\ldots
$$

(like resistances in series)

Conductors in parallel:
(multiple paths for heat flow)

T_{H}
$T_{H}-T_{C}=\square T$: same for all paths but current flows (I) are different.

$$
\begin{aligned}
I_{\text {total }} & =I_{1}+I_{2}+\ldots \\
& =\square T / R_{1}+\square T / R_{2}+\ldots \\
& =\square T\left(1 / R_{1}+1 / R_{2}+\ldots\right) \\
& =\square T / R_{\text {equiv }}
\end{aligned}
$$

with

$$
1 / R_{\text {equiv }}=1 / R_{1}+1 / R_{2}+\ldots
$$

(like resistances in parallel)

Convection

- Occurs in fluid systems.

The energy flows along with the medium.
-Fluid near heat source becomes hot, expands, and rises.
Surrounding cooler fluid takes its place. Etc.

Radiation

Here the energy is carried by electromagnetic waves. Called
Thermal Radiation.
The Rate at which an object radiates is given by the Stefan-Boltzman Law:

$$
P_{\mathrm{rad}}=\square \square \mathrm{A} \mathrm{~T}^{4}
$$

where
$P_{\text {rad }}$: Power radiated in Watts
A : Area of emitter
T : Temperature of emitter in K
\square : Universal constant
(S-B's constant)
$\square=5.6703 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
\square : the emissivity of the emitter
($0<\square<1$, depending on the composition of the surface)

The rate an object absorbs thermal radiation is given by the same formula:

$$
P_{\text {abs }}=\square \square A\left(T_{\text {env }}\right)^{4}
$$

except that now $T_{\text {env }}$ is the temperature of the enviroment.

The emissivity \square of an object is the same for radiation and absorption.

- Lighter objects reflect more. (smaller [)
- Darker objects absorb more.
(larger D)
They also emit more.
A surface with $\square=1$ is called a Blackbody radiator.

