The Hydrogen Atom

Thornton and Rex, Ch. 7

Applying Schrodinger's En to the Hydrogen Atom

The potential: $\quad V(r)=\frac{-1}{4 \square \square} \frac{e^{2}}{r}$
Use spherical polar coordinates
(with $\square(x, y, z)=>\square(r, \square, \overline{)}$):
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \square}{\partial r}\right)+\frac{1}{r^{2} \sin \square} \frac{\partial}{\partial \square}\left(\sin \square \frac{\partial \square}{\partial \square}\right)$

$$
+\frac{1}{r^{2} \sin ^{2} \square} \frac{\partial^{2} \square}{\partial \square^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \square=0
$$

$\square(r, \square, \square)$ is separable:
$\square \quad \square(r, \square, \square)=R(r) f(\square) g(\square)$

Substitute this into S Eqn and apply appropriate boundary conditions to R,f,g.
— 3 separate equations and 3 quantum numbers. (For more, see section 7.2.)
$\frac{d^{2} g}{d \square^{2}}=-m_{l}^{2} g$
Azimuthal Eqn.
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 m}{\hbar^{2}}\left(E-V-\frac{\hbar}{2 m} \frac{l(\ell+1)}{r^{2}}\right) R=0$
Radial Eqn.
$\frac{1}{\sin \square} \frac{d}{d \square}\left(\sin \square \frac{d f}{d \square}\right)+\left(e(\ell+1)-\frac{m_{l}^{2}}{\sin ^{2} \square}\right) f=0$
Angular Eqn.
m_{ℓ} and ℓ are quantum numbers.

The Radial Equation

The Radial Equation is
the Associated Laguerre Equation.
We will find the ground-state solution.
Require $m_{l}=0, l=0$.

- $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 m}{\hbar^{2}}(E-V) R=0$

Substitute $V=-e^{2} /(4 \square \square r)$ and insert a trial solution:

$$
R=A e^{-r / a_{0}}
$$

This works if
$a_{0}=\frac{4 \square \hbar^{2}}{m e^{2}} \quad$ (Bohr Radius)
and $E=-\hbar^{2} /\left(2 m a_{0}^{2}\right)=-E_{0}=-13.6 \mathrm{eV}$

Higher order solutions can be found in terms of associated Laguerre functions.

They are labeled by a quantum number n (called the principal quantum number).

Energies are

$$
E=-E_{0} / n^{2}
$$

(just like the Bohr prediction.)

Angular and Azimuthal Equations

The azimuthal equation is just a SHO equation with solution $g=A e^{i m \square}$.

Single-valuedness requires $g(\square)=g(\square+2 \square)$.
$\square m_{l}$ is an integer.
The angular equation is the Associated Legendre Equation.

It is customary to combine the \square and \square solutions together as
Spherical Harmonics Y($\bar{\square}, \square)$
The quantum numbers satisfy

$$
\ell=0,1,2,3, \ldots
$$

and

$$
m_{l}=-l,-l+1,-l+2, \ldots, 0, \ldots, l-1, \ell
$$

(They also satisfy $\ell<n$.)

$|Y(\square, \square)|^{2}$

$s(\ell=0)$

$$
m_{l}=0
$$

$p(\ell=1)$

$m_{e}= \pm 1$
0

$m_{e}= \pm 2 \quad \pm 1$
0
$f(\ell=3)$

$m_{e}= \pm 3$
± 2
± 1

Atomic Quantum Numbers
n Principal Quantum Number
< Orbital Angular Momentum Quantum Number
$m_{e} \quad$ Magnetic Quantum Number

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& \ell=0,1,2,3, \ldots \\
& m_{\ell}=-\ell,-\ell+1,-\ell+2, \ldots, 0, \ldots, \ell-1, \ell
\end{aligned}
$$

In summary:

$$
\begin{aligned}
& n>0 \\
& c<n \\
& \left|m_{\ell}\right| \leq e
\end{aligned}
$$

Angular Momentum

Angular momentum of electron in the atom:
$L=m v r=\sqrt{\ell(l+1)} \hbar$
(Note that this disagrees with Bohr's original guess of $L=n \hbar$.)

For a given n, the energy is $E_{n}=-E_{0} / n^{2}$ independent of ℓ.
The different estates are degenerate.
Historical Notation:

States are usually labeled by the n number and the eletter.

For example: $n=3, \iota=1 \longrightarrow 3 p$ state.

Magnetic Quantum Number
ℓ determines the total angular momentum:

$$
L=\sqrt{\ell(l+1)} \hbar
$$

m_{ℓ} gives the z component of L :

$$
L_{z}=m_{\ell} \hbar
$$

Direction of \vec{L} can never lie on z axis: $m_{e}<\sqrt{\ell(l+1)}$ always.

An example for $\ell=2$
पL= $\sqrt{6} \hbar$

The choice of direction for the z axis is completely arbitrary.
L_{x} and L_{y} are undetermined, except for

$$
L_{x}{ }^{2}+L_{y}{ }^{2}=L^{2}-L_{z}^{2}
$$

Magnetic Effects

An electron orbiting around a nucleus has magnetic moment $[7$:

$\square=I A \hat{n}=\frac{-e}{(2 \square r / v)}\left(\square r^{2}\right) \hat{n}=\frac{-e r v}{2} \hat{n}=\frac{-e}{2 m} \vec{L}$
The component in the z direction is:
$D_{z}=\frac{-e}{2 m} L_{z}=\frac{-e}{2 m} m_{\epsilon} \hbar=-m_{\epsilon} \square_{B}$
where $\square_{B}=e \hbar / 2 \mathrm{~m}$

$$
\begin{aligned}
& =9.274 \times 10^{-24} \mathrm{~J} / \mathrm{T} \\
& =5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}
\end{aligned}
$$

is the Bohr magneton.
In an external magnetic field, \vec{B}, the magnetic dipole feels a torque:

$$
\vec{D}=\square \times \vec{B}
$$

and has a potential energy: $\quad V_{B}=-\vec{D} \cdot \vec{B}$

If \vec{B} is in the z direction then

$$
V_{B}=-\square_{z} B=+m_{\ell} \square_{B} B
$$

The energies for different m_{l}, which were degenerate for $B=0$, are now separated into $2 \ell+1$ different levels.

This is called the Normal Zeeman Effect.

B

The Stern-Gerlach Experiment

In the presence of an inhomogeneous magnetic field, there will be a net force on the atoms, depending on m_{l} :
$F_{z}=-\frac{d V_{B}}{d z}=m_{\ell} \square_{B} \frac{d B}{d z}$
ie. In the $+z$ direction for $+m_{e}$
No force
for $m_{c}=0$
In the $-z$ direction for $-m_{l}$

Thus, one could split the atoms according to the quantum number m_{e} :

Electron Spin

1922 - Stern and Gerlach did their experiment. The atoms split into two beams.

But the number of m_{l} values is always odd: $(2 l+1)$!

1925 - Goudsmit and Uhlenbeck proposed that the electron had an intrinsic spin and an intrinsic magnetic moment.

In analogy with orbital angular momentum they proposed a magnetic spin quantum number:

$$
m_{s}= \pm 1 / 2
$$

The electron's spin can either be oriented "up" or "down":

$$
+\frac{1}{2} \hbar-\cdots
$$

The total spin quantum number is $s=1 / 2$:

$$
\begin{aligned}
& |\vec{S}|=\sqrt{s(s+1)} \hbar=\sqrt{3 / 4} \hbar \\
& \vec{\nabla}_{s}=\frac{-e}{m} \vec{s}=-[2] \frac{\square_{B}}{\hbar} \vec{s}
\end{aligned}
$$

Compare with:

$$
\vec{D}_{L}=\frac{-e}{2 m} \vec{L}=-[1] \frac{\square_{B}}{\hbar} \vec{L}
$$

[*] are called gyromagnetic ratios:

$$
g_{s}=2 \quad g_{l}=1
$$

Selection Rules

Allowed transitions:

- lifetimes $\quad \sim_{\sim}^{10-9} \mathrm{sec}$
$\square \mathrm{n}=$ anything, $\quad \square \ell= \pm 1, \quad \square \mathrm{~m}_{\ell}=0, \pm 1$
Forbidden transitions:
- lifetimes much longer

Ex. 2s $\square 1 \mathrm{~s}, \square \sim 1 / 7 \mathrm{sec}$

Selection Rules and Normal Zeeman Effect

$$
B=0 \quad B \text { nonzero }
$$

B field always splits spectral lines into 3 for normal Zeeman effect.
7.14 FOR A Sd STATE DRAN ALL THE POSSIBLE ORIENTATIONS OF THE ANGULAR MOMENTUM VECTOR $\stackrel{\rightharpoonup}{L}$. WHAT IS $L_{x}^{2}+L_{y}^{2}$ FOR THE $m_{l}=-1$ COMPONENT?

$$
\begin{aligned}
& 3 d \quad \Rightarrow \quad l=2 \\
& \therefore L=\sqrt{l(l+1)} \hbar=\sqrt{6} \hbar
\end{aligned}
$$

POSSIble values of $m_{l}=-2-10+1+2$ WITH $L_{z}=m_{l} \hbar$

$$
\begin{aligned}
& \text { FOR } m_{l}=-1 \Rightarrow L_{z}=-\hbar \\
& L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \\
& \therefore 6 \hbar^{2}=L_{x}^{2}+L_{y}^{2}+\hbar^{2} \\
& \therefore L_{x}^{2}+L_{y}^{2}=5 \hbar^{2}
\end{aligned}
$$

7.25 A HYDROGEN ATOM IN A 5 f State is in a magnetic field OF ST. WHAT IS THE ENERGY in the absence of the mag. Field ? How many states are there, and what are their energies in the mag. held?

$$
\begin{aligned}
n=5 \quad l & =3 \quad m_{l}=0, \pm 1, \pm 2, \pm 3 \\
E_{5} & =\frac{-13.6}{25}=-0.544 \mathrm{eV} \\
V_{B} & =m_{l} B \mu_{B}=m_{l} \cdot 3.5 .79 E-5 \mathrm{eV} / T \\
\Rightarrow & =0 \text { FOR } m_{l}=0 \\
& = \pm 1.74 E-4 \mathrm{eV} \text { FOR } m_{l}= \pm 1 \\
& = \pm 3.47 E-4 \mathrm{eV} \text { FOR } m_{l}= \pm 2 \\
& = \pm 5.21 E-4 \mathrm{eV} \text { FOR } m_{l}= \pm 3
\end{aligned}
$$

 EXAGERATED

