Many-Electron Atoms

Thornton and Rex, Ch. 8

In principle, can now solve Sch. Eqn for any atom.

In practice, -> <u>Complicated!</u>

Goal--

To explain properties of elements from principles of quantum theory (without exact solutions)

- Elements distinguished by nuclear charge Z (= number of electrons)
- To first approx., each electron moves in electric field of nucleus + remaining electrons:

- Principles for filling electron states:
 - 1) Always fill lowest energy state first.
 - 2) No two electrons can have same quantum numbers $(n, \ell, m_{\ell}, m_{s})$.

Pauli Exclusion Principle

No two electrons can occupy the same quantum state.

Building up atomic structure of atoms

Hydrogen	<u>n</u> 1	<u>ℓ</u> 0	<u>m</u> 0	<u>m</u> <u>s</u> ±1/2	
Helium	1 1	0 0	0 0	+1/2 -1/2	

Helium has a <u>closed</u> shell.

For Lithium, now add n=2 electron, but $\ell = 0$ or $\ell = 1$?

Smaller l always has lower energy.

Lithium	1	0	0	+1/2
	1	0	0	-1/2
	2	0	0	±1/2

	<u>n</u>	<u>l</u>	<u>m</u> _e	<u>m</u> s
Hydrogen	1	0	0	+1/2
Helium	1	0	0	-1/2
Lithium	2	0	0	+1/2
Beryllium	2	0	0	-1/2
Boron	2	1	-1	+1/2
Carbon	2	1	0	+1/2
Nitrogen	2	1	+1	+1/2
Oxygen	2	1	-1	-1/2
Flourine	2	1	0	-1/2
Neon	2	1	+1	-1/2
Sodium	3	0	0	+1/2
Magnesium	3	0	0	-1/2
Aluminum	3	1	-1	+1/2
Silicon	3	1	0	+1/2
Phosporus	3	1	+1	+1/2
Sulfur	3	1	-1	-1/2
Chlorine	3	1	0	-1/2
Argon	3	1	+1	-1/2
Potassium	4	0	0	+1/2

(Last Electron Added)

Chemical properties of elements

Electrons in outermost, largest n orbits are most weakly bound. They determine the chemical properties of the elements. Elements with similar electron structure have similar properties.

- <u>Inert or Noble Gases</u>
 Closed p subshell (s for He).
 He (1s²), Ne (2s²2p⁶), Ar (3s²3p⁶)
- <u>Alkalis</u> Have single electron electron outside closed shell. Li (2s¹), Na (3s¹), K (4s¹)
- <u>Halogens</u>
 Are one electron short of a closed shell.
 F (2s²2p⁵), Cl (3s²3p⁵)

Total Angular Momentum

Consider a 1-electron atom (or with just 1 electron outside closed shell).

It has Orbital Angular momentum \vec{L} and Spin Angular momentum \vec{S} .

These can be combined to give Total Angular momentum $\vec{J} = \vec{L} + \vec{S}$.

J is quantized with

and

 $J_z = m_j \hbar$

where $j = l \pm s$

or $j = \ell \pm 1/2$ (since s = 1/2)

j will be half-integral (1/2, 3/2, 5/2, ...) m_j will also be half-integral, ranging from -j to j.

Example: <u>*l* =1, s=1/2</u>

 $m_{\ell} = (1,0,-1)$ $m_{s} = (-1/2,+1/2)$

3 2 = 6 states

Can combine into

j = 3/2 = 1 + 1/2 m_j = (-3/2,-1/2,+1/2,+3/2) (4 states)

or

j = 1/2 = 1 - 1/2 $m_j = (-1/2,+1/2)$ (2 states)

Total number of j-states is 6 = 4 + 2.

Number

Momentum Letter

Momentum Number

Spin-Orbit Coupling

- Recall, coupling of spin to a magnetic field shifts the energy $(V_B = -\vec{\mu}_s \cdot \vec{B})$.
- Motion of electron produces an "internal" magnetic field.
- So there is an additional contribution to the energy:

$$V_{SL} \propto \vec{S} \cdot \vec{L}$$

This is the Spin-Orbit Coupling:

 $V_{SL} \propto \vec{S} \cdot \vec{L}$

Now states with definite energy do not have unique L and S quantum numbers (m_{e}, m_{s}) . We must use J quantum numbers (j, m_{j}) .

States with $j = \ell - 1/2$ have slightly less energy than states with $j = \ell + 1/2$.

(States with different m_j are still degenerate for each j.)

Selection Rules

Allowed transitions:

• lifetimes $\tau \sim 10^{-9}$ sec

 $\Delta n = anything, \quad \Delta \ell = \pm 1,$

 $\Delta j = 0, \pm 1, \qquad \Delta m_j = 0, \pm 1$

Forbidden transitions:

• lifetimes much longer

Ex. 2s \rightarrow 1s, $\tau \sim 1/7$ sec

Many-Electron Atoms

A careful analysis involving \vec{L} and \vec{S} in multi-electron atoms is very complicated.

Hund's Rules

(Empirical rules for filling a subshell, while minimizing the energy)

- The total Spin should be maximized (without violating Pauli Exclusion Principle).
- 2) Without violating Rule 1, the Orbital Angular momentum should also be maximized.

Handwaving explanation:

Electrons repel each other, so we want them as far from each other as possible.

- 1) If spins of two electrons are aligned (for maximum \vec{s}), then Pauli Exclusion Principle says they must have different \vec{L} orbits. They will tend to be farther apart.
- 2) If the L orbits are aligned (although with different magnitudes), then the electrons will travel around the nucleus in the same direction, so they don't pass each other as often.

Example:

A d subshell ($\ell = 2$) can contain 10 electrons.

Example:

A d subshell ($\ell = 2$) can contain 10 electrons.

Many-Electron Atoms

For many-electron atoms there is now <u>orbit-orbit</u> and <u>spin-spin</u> interactions, in addition to <u>spin-orbit</u> interactions.

Consider simplest case of 2 electrons with \vec{L}_1 , \vec{S}_1 and \vec{L}_2 , \vec{S}_2 .

Only "good" quantum number is associated with total angular momentum

 $\vec{J} = \vec{L}_1 + \vec{L}_2 + \vec{S}_1 + \vec{S}_2$.

(By "good", I mean states with definite energy have definite j and m_j.)

How can we describe atom to best understand energy levels? <u>LS, or Russell-Saunders, Coupling</u> For most atoms the <u>spin-orbit</u> coupling is relatively weak. Then it makes sense to

add the angular momentum in steps:

First,
$$\vec{L} = \vec{L}_1 + \vec{L}_2$$

 $\vec{S} = \vec{S}_1 + \vec{S}_2$

Then $\vec{J} = \vec{L} + \vec{S}$

For 2 electrons the Total Spin Quantum Number 5 is = 0 (spins anti-parallel) or = 1 (spins parallel).

The Total Orbital Angular Momentum Quantum Number L is an integer in the range between $|\ell_1 - \ell_2|$ and $|\ell_1 + \ell_2|$.

The Total Angular Momentum Quantum Number J is an integer in the range between |L - S| and |L + S|. Note that for S=0, there is <u>1</u> value of J, given by J=L. This state is called a <u>Singlet</u>.

For S=1, there are $\underline{3}$ values of J, given by J=L-1, J=L, J=L+1. These states are called a <u>Triplet</u>.

In general, the <u>multiplicity</u> of the states is given by (25+1).

The Spectroscopic notation is

 $n^{(25+1)}L_{J}$

Example:

2 electrons, one in 4p, other in 4d. I.e., n=4, $l_1=1$, $s_1=1/2$ $l_2 = 2, s_2 = 1/2$ Possible values of S: S=0 or S=1 Possible values of L: L=1, 2, or 3 Possible values of J: for singlet (S=0): J=L for triplet (S=1): J=L-1 or J=L or J=L+1

Use Hund's rules to order the energies.

Use Hund's rules to order the energies.

Example:

Helium 1s²

 $\ell_1 = 0, s_1 = 1/2$ $\ell_2 = 0, s_2 = 1/2$

Possible values of S=0,1

Possible values of L=0

Possible values of J=0,1

not allowed by Pauli Exclusion (requires both electrons all same QN's)

If one electron is excited to 2s, so the state is 1s2s, then

both ${}^{1}S_{0}$, ${}^{3}S_{1}$ are allowed.

jj Coupling

For high-Z elements the <u>spin-orbit</u> coupling is large for each electron. Now add the angular momentum:

First,
$$\vec{J}_1 = \vec{L}_1 + \vec{S}_1$$

 $\vec{J}_2 = \vec{L}_2 + \vec{S}_2$
Then $\vec{J} = \vec{J}_1 + \vec{J}_2$

Anomalous Zeeman Effect

Recall, energy shift in external magnetic field:

 $V_{\rm B} = -\mu \cdot \vec{B}$

The magnetic moment gets both orbital and spin contributions:

$$\vec{\mu} = \vec{\mu}_{L} + \vec{\mu}_{S} = \frac{-e}{2m} [\vec{L} + 2\vec{S}]$$

If S=0, this is simple. It is just the Normal Zeeman effect. Energy levels split according to m_e values:

 $V_B = m_\ell \mu_B B$

But.... most atoms are not "Normal".

If both S and L are nonzero, the spin-orbit coupling requires us to use J-states. Projecting $\vec{\mu}$ onto \vec{J} gives

$$V_{\rm B} = \frac{e}{2m} g \vec{J} \cdot \vec{B}$$

 $= \mu_B g m_J B$

where the projection factor (called the Landé g factor) is

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

This is the Anomalous Zeeman Effect.