
Relativity
1905 - Albert Einstein:

•    Brownian motion

fi  atoms.

•   Photoelectric effect.

fi  Quantum Theory

•   “On the Electrodynamics of Moving
    Bodies”

fi  The Special Theory of Relativity



The Luminiferous Ether

Hypothesis:  EM waves (light) travel
through some medium - The Ether

Speed of light: c = 3 x 108 m/s
   w.r.t fixed ether.

The earth moves at v = 3 x 104 m/s
w.r.t fixed ether.

fi  Speed of light w.r.t earth should 
      depend on direction.



The Michelson-Morley
Experiment

An interferometer
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The interference fringes should shift.

But no effect was observed!

What was wrong?



The Lorentz-Fitzgerald Contraction

Suppose that the ether squashes any
object moving through it?

To counteract the change in light speed,
we need:
                d’ = d √1 - v2/c2



            Galilean Transformations.
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t’ = t
z’ = z
y’ = y
x’ = x - vt



From Head on Collision to Collision at Rest 
by changing Frames 

 
Start from known (“Obvious”):  

equal-mass head-on elastic collision 

 
Relate to elastic collision with one at rest 

View train frame (5f/s right):  
transforms into known situation 

 

Ut = Us – V    (+ u,v to right):  Ut = Us - 5 
 

Then transform back to station (5f/s left): 
  

Us = Ut + V:       U’s = U’t + 5  
 

Result: cue ball stops, target ball rolls on 
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Equal-mass totally inelastic collision 

 
Relate to inelastic collision with one at rest 

Ut = Us – 5 
U’s = U’t + 5 

Result: combined mass moves at half speed of incident 



 
(Very) Asymmetric Elastic Collision 

 
Choose Train Frame to put big mass at rest: 

Ut = Us – (-10) = Us + 10 
U’s = U’t – 10 

 
Result: light ball (nearly) twice speed of heavy ball;  

heavy ball (nearly) unaffected 



Finally, use to solve for  
Asymmetric head-on Elastic Collision 

 
Again Choose Train Frame to put big mass at rest: 

Ut = Us + 5 
U’s = U’t – 5 

 
Result: light ball (nearly) three times speed of heavy ball;  

heavy ball (nearly) unaffected 
Example: drop tennis ball on top of basketball 

rebound matches this situation 
 

Lessons from changing frames: 
An exercise in Gallilean transform for velocities  
Analysis from the simplest point of view 
Well-chosen transformation can give non-trivial results 



In frame K, two charges at rest.  Force is
given by Coulomb’s law.
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K’y’

x’

z’

In moving frame K’, two charges are moving.
Since moving charges are currents,
Force is Coulomb + Magnetism.



Principle of relativity:

“The laws of nature are the same in all
inertial reference frames”

Something is wrong!

• Maxwell’s Equations?

• The Principle of Relativity?

• Gallilean Transformations?



Einstein decided
fi Galilean Transformations are the

problem.

Einstein’s two postulates:

1. The principle of relativity is correct.
The laws of physics are the same in all
inertial reference frames.

2. The speed of light in vacuum is the
same in all inertial reference frames
(c = 3 x 108 m/s regardless of motion of
the source or observer).



The second postulate seems to violate
everyday common sense!

Rocket   Light pulse Observer
v=0.5 c      v=c

Einstein says: observer measures the light
as traveling at speed c, not 1.5c.



Gedanken Experiments
A light clock:

It ticks every Dt = 2 w/c seconds.
One can synchronize ordinary clocks with
it.
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Time Dilation

OG: Observer on Ground

w



OT: Observer on Truck

OT’s clock as seen from the ground:

                     c = 3 x 108 m/s

              (ct/2)2 - (vt/2)2 = w2
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Time for one round trip of light, as seen
from the ground:

t = (2 w/c)   √1 - v2/c2

For v = 0.6c,  t = (2 w/c) x 1.25

All of OT’s processes slow down compared
to OG as seen by OG.

Similarly,

All of OG’s processes slow down compared
to OT as seen by OT.



Length Contraction

OG: Observer on Ground

w



OT: Observer on Truck

Device on truck makes mark on track
each time clock ticks.

As seen from ground:

Distance between marks
= (time between ticks) x v

= [(2 w/c)   √1 - v2/c2  ]  v
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As seen from truck:

Distance between marks
= (time between ticks) x v

= (2 w/c) v

(To the person on the truck the time
between ticks is (2 w/c).)

(Distance measured on truck)

     =  √ 1 - v2/c2

         x (distance measured on ground)

As seen from a moving frame, rest
distances contract.

(L-F contraction)



Simultaneity
Events occur at a well defined position and
a time (x,y,z,t).

But events that are simultaneous (same t)
in one inertial frame are not necessarily
simultaneous in another frame.



The light from the two flashes reach OG
at the same time.  He sees them as
simultaneous.
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OT passes OG just as the lights flash.
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But light from B reaches OT first.  Since
both light beams started the same
distance from her, and both travel at
speed c,  she concludes that B must have
flashed before A.
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Lorentz Transformations

•  Flashbulb at origin just as both axes are
   coincident.
•  Wavefronts in both systems must be
    spherical:

x2 + y2 + z2 = c2t2       and

x’2 + y’2 + z’2 = c2t’2

•  Inconsistent with a Galilean
   transformation
•  Also cannot assume t=t’.
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Assuming:

• Principle of relativity

• linear transformation (x,y,z,t)
        -> (x’,y’,z’,t’)

Lorentz Transformations (section 2.4)

x’ = g ( x - v t )

y’ = y

z’ = z

t’ = g ( t - v x / c2 )

With g = 1 / √1 - v2/c2  .

(Often also define   b = v / c .   )



Time Dilation (again)
Proper time:  time T0 measured between
two events at the same position in an
inertial frame.

OG’s clock:  T0 = t2 - t1,       (x2-x1=0)

OT’s clock:  T’ = t’2 - t’1

t’2 - t’1  = g (t2 - t1 - v/c2 (x2-x1) )

 T’ = g T0 > T0

Clocks, as seen by observers moving at a
relative velocity, run slow.
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Length Contraction (again)
Proper length:  distance L0 between points
that are at rest in an inertial frame.

OT on truck measures its length to be
 L0 = x’2 - x’1.  This is its proper length.
OG on ground measures its length to be
L = x2 - x1, using a meter stick at rest
(t2 = t1).

Then
L0 = x’2 - x’1 = g (x2 - x1 - v (t2 - t1))

         = g L

OG measures L = L0/ g < L0.

Truck appears contracted to OG.
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An application
Muon decays with the formula:

N = N0 e-t/t

N0 = number of muons at time t=0.
N = number of muons at time t seconds
later.
t = 2.19 x 10-6 seconds is mean lifetime of
muon.

Suppose 1000 muons start at top of
mountain d=2000 m high and travel at
speed v=0.98c towards the ground.  What
is the expected number that reach earth?

Time to reach earth:
t = d/v = 2000m/(0.98 x 3 x 108 m/s)
   = 6.8 x 10-6 s

Expect N = 1000 e-6.8/2.19 = 45 muons.

But experimentally we see 540 muons!
What did we do wrong?



Time dilation:  The moving muon’s internal
clock runs slow.  It has only gone through

t’ = 6.8 x 10-6 √1 - 0.982    s
   = 1.35 x 10-6 s

So N = 1000 e-1.35/2.19 = 540 muons survive.

Alternate explanation: From muon’s
viewpoint, the mountain is contracted.
Get same result.



Addition of velocities
Galilean formula  (u=u’+v) is wrong.

Consider object, velocity u’ as seen in
frame of OT who is on a truck moving with
velocity v w.r.t the ground.

What is velocity u of the object as
measured by OG on the ground?

Recall u = Dx/Dt, u’ = Dx’/Dt’.
Inverse Lorentz transformation formulae:

Dx = g ( Dx’ + v Dt’ )

Dt = g (Dt’ + v Dx’ / c2 )

v
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Dx       g ( Dx’ + v Dt’ )
  u =          =

Dt        g (Dt’ + v Dx’ / c2 )

                    u’ + v
         u =
                 1 + v u’/c2

For u’ and v much less than c:

  u ≈  u’ + v

Velocities in y and z directions are also
modified (due to t’≠t, see section 2.6)



Examples:

Rocket   Light pulse Observer
v=0.5 c      u’=c

Observer sees light move at

             0.5c + c
  u =                            = c
         1+(0.5c)(c)/c2

Light moves at c=3x108 m/s in all frames.

Rocket   Projectile
v=0.8 c      u’=0.5c              Observer

Observer sees projectile move at

          0.5c + 0.8c
  u =                            =  0.93c
         1+(0.5)(0.8)

Massive objects always move at speeds < c.



The Twin Paradox
Suppose there are two twins, Henry and
Albert.  Henry takes a rocket ship, going
near the speed of light, to a nearby star,
and then returns.  Albert stays at home on
earth.

Albert says that Henry’s clocks are
running slow, so that when Henry returns
he will still be young, whereas Albert is an
old man.

But Henry could just as well say that
Albert is the one moving rapidly, so Albert
should be younger after Henry returns!

Who is right?



The first scenario is the correct one.

The situation is not symmetric, because
the rocket has to decelerate, turn around
and accelerate again to return to earth.
Thus, Henry is not in an inertial frame
throughout the trip.  He does return
younger than Albert.



Spacetime Diagrams: Minkowski 
 

Put axes in same units:  
x in, say, light minutes or lightyears 

 
Slope higher for slower rocket, 45 degrees for light 

 

 
“Past” can get a signal to Present, but “Elsewhere” can’t  

(light is too slow) 
Present can affect future, but not “Elsewhere” 



The Twin Paradox: two inertial frames! 

 
 

v = .8 c, γ = 1/.6  
Frank: T = 2 * 8ly /.8c = 2 * 10 = 20 y 
Mary:  T = 2 * 10 y/ γ = 2 * 6y = 12 y



Relativistic Doppler Effect
Light source and observer approach each
other with relative velocity, v.
Light is emitted at frequency n0.

Observer sees light at a higher frequency:

               √1 + b
       n  =                n0    with b = v/c
              √1 - b

•  If source is receding, the formula still
   holds but now b is negative.

We know that the universe is expanding,
because light from distance galaxies is
red-shifted, indicating motion away from
us.
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Comparison of Relativistic and NR Doppler Effect: 

 
Relativistic (for light), source moving at β 

 
ν = νo √ { (1+β) / (1- β) } = νo (1– β2)1/2/ (1 - β) 

multiply top and bottom by (1- β) 
 

Nonrelativistic (for light, u=c, source moving at β) 
 

ν = νo × 1 / (1 - β) 
 

They agree whenever β is small  
same lowest order shift—from denominator 

numerator is higher order correction: 
 

(1– β2)1/2 ~ 1 – ½ β2 ~ 1 for β << 1 
 
 

Remark: c = λ ν Always, both NR and Rel: 
It’s fundamental to mathematics of waves. 

 
 
 
 
 
 
 
 



Relativistic Momentum
Requirement: momentum is conserved in all
inertial frames.
Assume: p = m v.

Elastic scattering in c-o-m frame:

px:      mu   +   m(-u)         =          0

Transform to frame of A:

                          -2u
px:    0  +   m(             )      ≠      m(-2u)
                       1+u2/c2

It doesn’t work!
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Relativistic momentum:

                                mv
       p = g m v  =
                           √1-v2/c2

Relativistic Kinetic Energy:

    K = (g - 1) mc2

                1
       = (                 - 1) mc2

            √ 1-v2/c2

For small velocities,   v/c << 1:

 K  = ( 1 + 1/2 (v/c)2 + ...        - 1) mc2

       ≈ 1/2  m v2

For large velocities v      c:

               K        •

Massive objects always travel at speeds
less than c.



 
KE and velocity: Relativistic vs. Classical 

  
Noticeable departures for v/c > .4 or so 

 
Starting from v=0, takes infinite KE to get to v=c 

 
 



Velocity nearly stops changing after KE ~ 4 mc2 

 
KE = (γ – 1) mc2 

γ = 2 (KE = rest) happens for β = √(1 – 1/γ2) = .87 
electron has mc2 = .511 MeV 

 

 

 

 



Relativistic Energy
According to Einstein, even a mass at rest
has energy:

      E0 = m c2          (rest energy)

Thus, the total energy of a moving object
is
                    E =       K       +    E0

                                   = (g-1) mc2  +    mc2

                        = g mc2

It is straightforward to show:

         E2 - p2c2   =   m2c4

For a massless particle (e.g. a photon):

                     E = |p| c



In general

           |p| c2       g mv c2
 v    =             =
                     E          g mc2

For a massless particle this gives

   v   =  c

Massless particles travel at the speed of
light c.



Conservation Laws and E = mc2 
 

   NR    Relativistic 
Mass   Always    Elastic Only 
Momentum  Always    Always 
Energy   KE: Elastic Only Always 

After relativistic redefinitions 
Trade Conservation of Mass (NR)  

for Conservation of Relativistic Energy 
 NR conservation of mass: just a very good approximation 
 

E = γ mc2 is a convention, though a very sensible one. 
E = KE + Erest,     Erest = mc2 

 
The physics (the “real” E = mc2) is in  
 ∆ E = ∆ mc2 
 
Changes in energy show up as immeasurably tiny changes in mass, for 
everyday cases like heating up an object.  

 
But: if you change mass more substantially,  

it releases a LOT of Energy: typically kinetic 
 

Or: use lots of energy (inelastic relativistic collision)  
to create new particles  (more mass, less KE) 
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Collisions of equal masses 

Calculate either initial KE, or final effective mass 
 
Fixed target, moving projectile 

NR result 
ko = ½ m u2  

Kcm = 2 × ½ m (u/2)2 = ko / 2    (linear) 
In cm: -u/2, u/2 are velocities, momentum sums to 0 

 
Relativistic result  (let c = 1…) 

M2 = Ei
2 – pi

2               (= Ef
2 – pf

2 since relativistic invariant) 
= (ei + m)2 - pi

2     =       ei
2- pi

2 + 2 ei m + m2 

                                      Using ei
2- pi

2 = m2 
M2 = 2 m (ei + m) 

M = 2m{1 + k/2m}1/2  
Using ei

 = k+ m 
NR: k ~ ko << 2m, so M = 2m as expected 
Relativistic:  KE(cm) = M – 2m   (conserve E, not KE) 
 Can swap this KE of initial 2m, for less KE, more mass in final state 
Highly Relativisic case: when k >> 2m, 

M = √ (2km) 
So only grows as square root, not linearly in initial k 
Most of initial KE wasted in motion of compound cm object M 

 



If collide equal masses head on, no such waste!  
Much more M for similar electricity bill 

 
For k>>m, for each mass: 

M2 = Ei
2 – pi

2 = (2ei) 2 – 0    (p sums to 0)  
M = 2 (k + m) ~ 2k (linear):   use a collider! 

 
Examples: head on collision of proton on proton (m) 

 
Tevatron (collider): k = 1000 m ;    

 m = proton mass ~ 1 GeV = 109 eV, so k ~ 1 TeV = 1012 eV 
M = 2000 m 

Up to 1000 pairs of proton/antiprotons could be produced 
 

LHC (collider): k = 7000 m ~ 7 TeV 
M = 14000 m 

 
Examples of fixed target: 

Highest Energy cosmic rays colliding on proton in nucleus of air atom  
 

k = 1020 eV = 1012 m   (~108 higher than LHC beam) 
M = √ (2km) = m √ (2 x 1012 ) ~ 106 m  

Still ~ 102 higher than LHC but nowhere near 108 

 

1 LHC beam as fixed target 
 

M = √ (2km) = m √ (14000 ) ~ 120 m << 14000 m 
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