
Quantum Theory

Thornton and Rex, Ch. 6



Matter can behave like waves.

1) What is the wave equation?

2) How do we interpret the wave
function y(x,t)?



Light Waves

Plane wave:  y(x,t) = A cos(kx-wt)

wave (w,k)  ¤  particle (E,p):

1) Planck:  E = hn = hw
2) De Broglie:  p = h/l = hk

A particle relation:

3) Einstein:  E = pc

A wave relation:

4) w = ck   (follows from (1),(2), and (3))

The wave equation:
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Matter Waves

Equations (1) and (2) must hold.
    (wave (w,k) ¤ particle (E,p))

Particle relation (non-relativistic, no
forces):

3’) E = 1/2 m v2 = p2/2m

The wave relation:

4’) hw = (hk)2/2m
(follows from (1),(2), and (3’))

fi Require a wave equation that is
consistent with (4’) for plane waves.



The Schrodinger Equation

1925, Erwin Schrodinger wrote down the
equation:
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The Schrodinger Equation

(Assume V is constant here.)

A general solution is

y(x,t) = A ei(kx-wt)

     = A ( cos(kx-wt) + i sin(kx-wt) )

              h2k2
fi hw =          + V
              2m

              p2
fi E =           + V
             2m
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Complex Numbers in a Nutshell 
Why?  Solve all quadratics     ax2 + bx + c = 0 

x = d ± √e         d = -b/2a;   e = (b/2a)2 – c/a  
even when e < 0:     x = d ± i √|e|,   

where i2 = -1 
Complex number z: 
z = x + iy (Cartesian) = reiφ  (magnitude & phase) 
 r = √( x2 + y2);    tan φ = y/x  

add subtract (Cartesian)  multiply or divide (amp & phase) 
  
Complex conjugate:  z* = z with i → - i 
|z|2 = z*z = (x-iy)(x+iy) = x2 + y2   z* = z with i → - i 
      = re-iφ reiφ = r2e0 = r2   

Compare to square of |x| for real x:     square magnitude 
That is, the magnitude is independent of the phase. 
 Division: w/z = wz*/|z|2 = rw/rz ei (φw – φz) 
 
eiφ = cos φ + i sin φ 
   infinite series for exponential: separate even and odd terms, using i2 = -1 
    ei2π = ei0 = 1            eiπ/2  = cos π/2 + i sin π/2 = i     
Powers follow naturally: z = rneinφ     

i2 = eiπ = -1     or    1 + eiπ = 0 
Roots are trickier: z1/n = r1/nei(φ+2πk)/n),  for k=0…n-1      

√(-1) =  (eiπ)1/2 = {eiπ/2, ei3π/2}= ± i 
      For more: google   Complex Numbers       wiki or mathworld     



What is y(x,t)?
Double-slit experiment for light:

I(x) ≈ |E(x)|2 + |B(x)|2

Probability of photon at x is µ I(x).

Max Born suggested:

|y(x,t)|2 is the probability of finding a
matter particle (electron) at a place x
and time t.



Probability and Normalization

The probability of a particle being
between x and x + dx is:

P(x) dx = |y(x,t)|2 dx
            =  y*(x,t)y(x,t) dx

The probability of being between x1 and
x2 is:

P = ∫   y*y dx

The wavefunction must be normalized:

P = ∫  y*y dx    =  1

x1

x2

∞
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Properties of valid wave functions

1.  y must be finite everywhere.

2.  y must be single valued.

3.  y and dy/dx must be continuous for
finite potentials (so that d2y/dx2

remains single valued).

4.  y  Æ  0 as  x  Æ ± ∞ .

These properties (boundary conditions)
are required for physically reasonable
solutions.



Heisenberg’s Uncertainty Principle

Independently, Werner Heisenberg,
developed a different approach to
quantum theory.  It involved abstract
quantum states, and it was based on
general properties of matrices.

Heisenberg showed that certain pairs of
physical quantities (“conjugate variables”)
could not be simultaneously determined to
any desired accuracy.



We have already seen:

 Dx Dp ≥ h/2

It is impossible to specify simultaneously
both the position and momentum of a
particle.

Other conjugate variables are (E,t)  (L,q):

 Dt DE ≥ h/2

 Dq DL ≥ h/2



Expectation Values

Consider the measurement of a quantity
(example, position x).  The average value
of many measurements is:

    ∑ Ni xi
x =
         ∑ Ni

For continuous variables:

         ∫   P(x) x dx
x =
         ∫   P(x) dx

where P(x) is the probability density for
observing the particle at x.

i

i

∞

∞

-∞

-∞



Expectation Values (cont’d)

In QM we can calculate the “expected”
average:

             ∫   y*y x dx
  x    =                             = ∫   y*y x dx
             ∫   y*y dx

         The expectation value.

Expectation value of any function g(x) is:

   g(x)     = ∫   y* g(x) y dx
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What are the expectation values of p or E?

First, represent them in terms of x and t:

∂ y       ∂                                 ip
       =        (Aei(kx-wt)) = ik y =      y
∂ x      ∂ x                               h

                     ∂ y
fi p y = -ih

               ∂ x

Define the momentum operator:

              ∂
p  = -ih

        ∂ x

Then:

            ∂ y
   p    = ∫   y* p y dx = -ih ∫ y*         dx

  ∂ x
∞

-∞ -∞

∞



Similarly,

∂ y                  -iE
       = -iw y =        y
∂ t                   h

                     ∂ y
fi E y = ih

               ∂ t

so the Energy operator is:

             ∂
E  = ih

       ∂ t

and

            ∂ y
   E    = ∫   y* E y dx = ih ∫ y*         dx

  ∂ t
∞

-∞ -∞

∞



A self-consistency check:

The classical system obeys:

   p2
   E = K + V =           +  V

  2m

Replace E and p by their respective
operators and multiplying by y:

       p2
   E y =  (         +  V ) y      2m

The Schrodinger Equation!



Time-independent Schrodinger Equation

In many (most) cases the potential V will
not depend on time.
Then we can write:

y(x,t) = y(x) e-iwt

    ∂ y
ih        = ih (-iw) y = hw y = E y
    ∂ t

This gives the time-independent S. Eqn:

The probability density and distributions
are constant in time:

y*(x,t)y(x,t) = y*(x)eiwt  y(x)e-iwt

                                = y*(x) y(x)

† 

-h2

2m
d2y(x)

dx 2 + V (x)y(x) = Ey(x)



The infinite square well potential

The particle is constrained to 0 < x < L.

Outside the “well” V = ∞,

fi y = 0

for x<0 or x>L.

V

x=0 x=L

V(x) = ∞
for x<0
      x>L

V(x)=0
for 0<x<L



Inside the well, the t-independent S Eqn:

-h2  d2y
              = E y
2m  d x2

 d2y      -2mE
fi         =           y  = - k2 y

 d x2            h2

(with k = √2mE/h2    )

A general solution is:

      y(x) = A sin kx  + B cos kx

Continuity at x=0 and x=L give

y(x=0) = 0
fi B=0

and y(x=L) = 0

fi y(x) = A sin kx

 with kL=np      n=1,2,3, . . .



Normalization condition gives

fi A = √2/L

so the normalized wave functions are:

yn(x) = √2/L   sin(npx/L)      n=1,2,3, . . .

with kn = np/L = √2mEn/h2

    n2p2h2
fi En =

    2mL2

The possible energies (Energy levels) are
quantized with n the quantum number.



Finite square well potential

Consider a particle of energy E < V0.
Classically, it will be bound inside the well

Quantum Mechanically, there is a finite
probability of it being outside of the well
(in regions I or III).

V(x) = V0

for x<0
      x>L

V(x)=0
for 0<x<L

Region
    I II III

x=0 x=L

V0

0



Regions I and III:

-h2  d2y
              = (E-V0) y2m  d x2

fi d2y/dx2 = a2 y  with a2 = 2m(V0-E)/h2

 > 0
The solutions are exponential decays:

yI(x) = A eax          Region I (x<0)

yIII(x) = B e-ax          Region III (x>L)

In region II (in the well) the solution is

yII(x) = C cos(kx) + D sin(kx)

with k2 = 2mE/ h2  as before.

Coefficients determined by matching
wavefunctions and derivatives at
boundaries.



The 3-dimensional infinite square well

S. time-independent eqn in 3-dim:

fi

The solution:

y = A sin(k1x) sin(k2y) sin(k3z)

with k1=n1p/L1, k2=n2p/L2, k3=n3p/L3.

Allowed energies:

       p2 h2        n1
2          n2

2       n3
2

E =          (     +      +     )
       2m        L1

2         L2
2       L3

2
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If L1= L2=L3=L (a cubical box)
the energies are:

   p2 h2

E =            ( n1
2 + n2

2 + n3
2 )

       2m L2

The ground state (n1=n2=n3=1) energy is:

   3 p2 h2
E0 =        2m L2

The first excited state can have
(n1, n2, n3) = (2,1,1) or (1,2,1) or (1,1,2)

There are 3 different wave functions
with the same energy:

   6 p2 h2
E1 =        2m L2

The 3 states are degenerate.



Simple Harmonic Oscillator
Spring force:   F = - k x

                1
fi V(x) =      k x2
                2

A particle of energy E in this potential:

-h2  d2y          1
                +      k x2 y  = E y2m  d x2           2

E

V(x)

-a a



d2y
         = ( a2 x2 - b ) y
d x2

with

       2m E                         m k
b =                  and    a2 =
          h                              h2

The solutions are:

yn(x) = Hn(x)  e

Hermite Polynomial         Gaussian
(oscillates at small x)      (exponential
                                         decay at large x)

-ax2/2



The energy levels are

En = ( n + 1/2 ) h w

where  w2 = k/m is the classical angular
frequency.

The minimum energy (n=0) is

E0 = h w /2

This is known as the zero-point energy.



The lowest energy state saturates the
Heisenberg uncertainty bound:

 Dx Dp = h/2

We can use this to calculate E0.

In the SHM,   PE   =   K   = E/2.

fi    k   x2   /2 =     p2   /(2m) = E/2

fi  k Dx2         = Dp2/m           = E

fi  Dx = Dp / √m k

From uncertainty principle:  Dx = h/(2Dp)

So   E = k Dx Dx = k (Dp / √m k )(h/(2Dp))

            = (h/2) √k / m     = h w /2



Barriers and Tunneling
A particle of total energy E approaches a
change in potential V0.   Assume E>V0:

Classically, the particle slows down over
the barrier, but it always makes it past
into region III.

Quantum Mechanically, there are finite
probabilities of the particle being
reflected as well as transmitted.

Region       I II III

V0

E



Solutions:

I     yI  = A eikx +  B e-ikx

II     yII  = C eik’x +  D e-ik’x

III     yIII  = F eikx

with

k = √2mE/h2                     k’ = √2m(E-V0)/h2

Region       I II III

Transmitted

Incident

Reflected

Intermediate

Incident Reflected

Intermediate

Transmitted



Coefficients determined by continuity of
y and derivative at boundaries.

The probability of reflection is

R = |B|2 / |A|2

The probability of transmission is

T = |F|2 / |A|2

In general there will be some reflection
and some transmission.

The result for transmission probability is

(Note T=1 for k’L=np,   n=1,2,3, . . .)
† 
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If E<V0        no transmission classically.

But in QM, probability of transmission is
nonzero.

For E<V0 intermediate wavefunctions are:

yII  = C eax +  D e-ax

where a2 = 2m(V0-E)/h2

The intermediate solution decays
exponentially, but there is a finite
probability for the particle to emerge on
the other side.

This process is called tunneling.

exponential



The probability for transmission is

     T ≈ 16 (E/V0) (1-E/V0) e-2aL

for aL >> 1
† 

T =
1
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V0

2 sinh2(aL)
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Applications of tunneling:

1) Scanning Tunneling Microscope
Consider two metals separated by
vacuum:

Apply a voltage difference between the
metals:

• The current ~ Tunneling Probability
     ~ e-aL

• Very sensitive to distance L
• With thin metal probe can map the

surface contours of the other metal
at the atomic level.

Potential work function f

L

E

metal metal



2) Nuclear a-Decay

The potential seen by the a-particle
looks like:

Because the decay is limited by the
probability of tunneling, small changes in
the potential or energy of the a particle
lead to large changes in the nuclear
lifetime.

232Th  t ≈ 2x108 yr
212Po   t ≈ 4x10-7 s

fi 24 orders of magnitude!

E

V(r)

r

electrostatic
repulsion ~ 1/r

strong force attraction




