
 

RLC Circuits 
 
Note:  Parts marked with * include calculations that you should do before coming to lab. 
 
 In this lab you will work with an inductor, a capacitor, and a resistor to 
demonstrate concepts of low-pass, bandpass, and high-pass filters, amplitude response, 
phase response, power response, Bode plot, resonance and Q. 
 
Series RLC Circuits 
*1.  Simple filters: 
 Figures 1 (a), (b), and (c) show low-pass, bandpass, and high-pass filters.  Write 
the transfer function H(ω) for each of these filters, showing the ratio Vout/Vin  as a 

 
Figure 1: Low-pass (a), bandpass (b) and high-pass (c) filters. 



 

function of the angular frequency ω of the input voltage. 
 

*2.  The low-pass – calculations: 
        Show that the low-pass filter in (a) above has a power response function: 
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 *  Explain why this is a low-pass filter by finding the limits ω = 0 and ω =∞. 

*  Explain why we say that resonance occurs when ω = ω0. 

*   The half-power points are the angular frequencies ω where the value of |H(ω)|2 is 
reduced to half the value at resonance. Verify that the half power points are 
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ω ω= + .  You may use the approximation that the resonance 

width is small compared to the central value ω0. 
*  The difference between half-power frequencies is the bandwidth of the resonance.                   
The Q of the resonance is equal to the resonance frequency divided by the 
bandwidth.  Show that Q = ω0L/R.  

3. The low-pass – experiment 
Set up the series low-pass filter shown below: 

Notice that there is no discrete resistor.  The resistor in this circuit is the resistance 

of the inductor plus any resistance contributed by the Function Generator.  Normally the 
Function Generator has an output impedance of 50 Ω. Verify that this is the case by 
measuring the resistance of the function generator output with the generator turned on but 
the output voltage set to 0 V. Measure the resistance of the inductor, add the value 
contributed by the Function Generator and use this sum in your calculations below. 

Calculate the resonance frequency and measure it by changing the oscillator 
frequency. You may find it convenient here to attach your DPO probes to both the Vin 
and Vout and use the “Measure” function to display on the screen both voltage amplitudes, 
their phase difference and frequency. 

 
Figure 2: Series Low-pass Filter. 



 

Using the measured resonance frequency and resistor value, calculate the Q.  Vary 
the oscillator frequency to find the half-power frequencies and calculate the Q from the 
measurements.  (Note:  At the half-power frequencies the output voltage is smaller than 
the output at resonance by a factor of 1/√2.) 

Calculate and measure the ratio of input and output voltages at resonance.  You 
should find that the output voltage is greater than the input!   Explain how a passive 
circuit like this can give a voltage gain. 

Measure the ratio of input and output voltages for very low frequency ~1% of the 
value at resonance.  From the transfer function you expect them to be the same.  Are 
they?  What is the phase shift at very low frequency? 

Reduced Q 
Reduce the Q of the filter by adding a 150 Ω resistor in series with the inductor.   

Measure the resonance frequency.  Do you expect it to be changed?  Is it?  Calculate and 
measure the Q for this circuit. 

More advanced topics 
Measure the output voltages when the input frequency is 20 kHz and when the input 

frequency is 40 kHz.  Use these measured values to show that the high frequency 
response of the filter decreases at a rate of –12dB per octave. 

Use the oscillator and DPO to measure a Bode plot for this filter.  The first part of the 
Bode plot is the magnitude of the response, expressed in dB as a function of frequency, 
10 Hz to 50 kHz.  The second part is phase (expressed in degrees or radians) as a function 
of frequency, 10 Hz to 50 kHz. 

Bandpass Filter 
Connect the same components as in Figure 3: 

 
Use the oscillator to show that this is a bandpass filter. 

Find the resonance frequency.  Compare with the resonance frequency of the low-pass 
filter above. 
     Find the Q.  Compare with the Q of the low-pass filter above. 

 

Figure 3: Bandpass Filter. 



 

     * Show from the transfer function that the amplitude response at high frequency is –
6dB/ octave, namely the output decreases by a factor of 2 when the frequency doubles.  
Measure the amplitude response at 20 kHz and 40 kHz to check for –6 dB/octave. 

Parallel RLC Circuits 
 As an example of a parallel circuit, consider the filter Figure 4 and calculate its 
transfer function. 
  *Explain why this is a notch filter.  What is the frequency of the notch? 
Use L = 27 mH, C = 0.047 μF and R = 150 Ω.  Measure the depth of the notch by 
comparing the response at the bottom of the notch with the response at low or high 
frequency.  Why doesn’t the response go to zero at the bottom of the notch? 
Asymptotic notation 
 A filter can be described by its asymptotic frequency dependence.  Although the 
transfer function may be a complicated complex function of frequency, the asymptotic 
characteristic is simple.  For example, a low-pass filter may have a transfer function that 
is inversely proportional to frequency in the limit of high-frequency. 
We say, H(ω) ∼ ω-1.  In general H (ω) ∼ωn, where n is a negative number for a low-pass 
filter. 
 In the asymptotic limit, a filter has a gain characteristic of 20 n decibels per 
decade (dB/decade). 
 Proof:  The gain characteristic in dB is  
     L = 20 log |H(ω)|. 
 If ω increases by a factor of 10 (one decade) then the change in level is  
    ΔL = 20 log |H(10ω)/H(ω)|, 
and this is just  
    ΔL = 20 log[10n] = 20n. 
 Similarly, the asymptotic dependence can be given in dB/octave.  Whereas a 
decade is a factor of 10 in frequency, an octave is a factor of 2 in frequency.  If the 
asymptotic frequency dependence is, again, H(ω) ∼ ωn , then this is just 
 
    ΔL = 20 log[2n] = 6n. 

 

Figure 4: Parallel or Notch Filter. 


