Physics 471 - Fall 2008

Homework \#3, due Friday, September 19

1. Griffiths problem 2.5

This problem is rather long, especially part (c). Use the following trigonometric identities:
$\sin ^{2}(x)=1 / 2(1-\cos (2 x))$ and $\sin (x) \sin (y)=1 / 2(\cos (x-y)-\cos (x+y))$
and use the integrals shown on the inside back cover of your textbook.
If you really don't like doing integrals, here is the most difficult one, from Mathematica:
$\int_{0}^{a} x \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi x}{a}\right) d x=\frac{a^{2}}{2 \pi^{2}}\left(\frac{\cos ((m-n) \pi)-1}{(m-n)^{2}}+\frac{1-\cos ((m+n) \pi)}{(m+n)^{2}}\right)$ for m, n integers
2. Griffiths problem 2.7.

Hint: Draw pictures of the first few stationary states of the infinite square well, and compare them with $\Psi(x, 0)$. Can you eliminate some of the c_{n} coefficients just by symmetry?
For part (d), you can use Mathematica to evaluate the infinite sum, or just leave it as a sum.
3. Griffiths problem 2.10.
4. Griffiths problem 2.11. Do this problem ONLY for ψ_{0}. It's too long otherwise.

