
Physics 471 Math Review Fall 2006

1. Complex Numbers

While the values of physical observables must be real numbers, quantum mechanical am-
plitudes are, in general, complex numbers. Consequently, some facility with the properties of
complex numbers is needed in any study of quantum mechanics.

A complex number z is usually represented as z = x+iy, where x and y are real numbers and
the symbol i satisfies i2 = −1. i can be viewed as

√−1. Apart from the introduction of i, the
algebraic properties of complex numbers are the same as those of real numbers. For example,

z2 = (x + iy)2 = x2 + 2x(iy) + (iy)2 = x2 − y2 + 2ixy .

Notice that z2 is another complex number and that, unlike the square of a real number, it is not
positive. There is a positive number naturally associated with a complex number z. It is best
constructed by defining the complex conjugate, z∗, of z. To get the complex conjugate of z, one
simply changes i to −i, i.e.

z∗ = (x + iy)∗ = x− iy .

With this definition, the product z∗z is

|z|2 ≡ z∗z = (x− iy)(x + iy) = x2 + y2 ≥ 0.

|z| = √
x2 + y2 is called the absolute value or modulus of z.

Complex numbers reside in a plane, called the complex plane, whose x-axis is the real axis
and whose y-axis is the imaginary axis. The ‘point’ (x, y) ↔ x + iy can also be specified by the

y

x

θ
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polar coordinates ρ, θ as

z = ρ(cos θ + i sin θ) , ρ =
√

x2 + y2 , tan θ =
y

x
.

Typically, the polar form is rewritten using Euler’s formula

cos θ + i sin θ = eiθ ,



to obtain
z = x + iy = ρeiθ.

In the latter form, ρ is just |z|, the modulus of z and θ is called the phase of z.

Exercises

1. Find the product of the complex numbers 2 + 3i and 1 + 4i.

2. Determine the reciprocal of z = x + iy in terms of x and y. Hint: If the reciprocal is
ζ = χ + iψ, then ζz = 1. Use this to determine χ and ψ.

3. Show that |eiθ| = 1 using Euler’s formula.

4. Express z = 2 + 2i in polar form.

5. If α and β are real, use Euler’s formula to show that

eiαeiβ = ei(α+β) .

6. Find the Cartesian form of z = 4eiπ/6.

7. What can you conclude about z if z = z∗?

2. Differential Equations

In quantum mechanics, like classical mechanics, the dynamics of particles are determined by
a differential equation. The quantum mechanical differential equation is called Schrödinger’s
equation. In one dimension, it is a second order differential equation for the wave function ψ(x).
As such, its solution will, in general, involve finding two independent functions which satisfy
the differential equation and imposing certain ‘boundary’ conditions on them dictated by the
physical circumstances. For many interesting applications, the Schrödinger equation for ψ(x)
can be reduced to the form

d2ψ(x)

dx2
± k2ψ(x) = 0 ,

with k being a real number. The form of the solution is determined by the sign of the k2 term.
If it is +k2, then the equation has the same form as the classical harmonic oscillator, and the
general solution is

ψ(x) = A cos(kx) + B sin(kx) ,

where A and B are independent of x and determined by the boundary conditions. For the −k2

case, the general solution is
ψ(x) = Aekx + Be−kx .

In quantum mechanical applications, the boundary conditions usually restrict not only the form
of the solution (oscillating or exponential), but also the values of k that are permissible. The
validity of these solutions and the use of boundary conditions are illustrated in the following
exercises.

Exercises
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1. Show by direct differentiation that the form of ψ(x) for the −k2 case is a solution to the
differential equation.

2. Show that the +k2 oscillatory solution can also be written

ψ(x) = Ceikx + De−ikx .

3. For the oscillatory (+k2) solution, suppose x is restricted to 0 ≤ x ≤ a. By requiring
ψ(0) = 0 and ψ(a) = 0, what are the restrictions on A, B, and k?

4. In some quantum mechanics problems, there are several regions with different values of k.
Suppose for 0 ≤ x ≤ a, the Schrödinger equation is

d2ψ(x)

dx2
+ κ2ψ(x) = 0 ,

and, for a ≤ x ≤ ∞, it is
d2ψ(x)

dx2
− k2ψ(x) = 0 .

Determine the form of ψ(x) in the two regions if ψ(0) = 0 and as x →∞, ψ(x) → 0.

3. Matrices

For quantum systems with a finite number of degrees of freedom, the equation of motion can be
written as a relation involving finite dimensional square matrices. We will develop this notion
is some detail in class, but it is useful to recall some simple properties of matrices. A square
matrix A is an n× n array usually written as

A =




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...

an1 an2 an3 · · · ann




.

In quantum mechanics, the notion of the hermiticity of a matrix is very important. Its definition
involves complex conjugation, discussed above, and the transpose, AT , of the matrix A. AT is
the matrix obtained by interchanging the row and columns of A, and the hermitian conjugate
of A, A†, is the complex conjugate of this matrix. Explicitly, A† is

A† =




a∗11 a∗21 a∗31 · · · a∗n1

a∗12 a∗22 a∗32 · · · a∗n2

a∗13 a∗23 a∗33 · · · a∗n3

...
...

...
. . .

...

a∗1n a∗2n a∗3n · · · a∗nn




.
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AT is just this matrix with the ∗’s omitted. If A† = A, the matrix A is said to be hermitian and
if AT = A, A is said to be symmetric.

Matrix multiplication is defined by the ‘row × column’ rule: If A and B are two n × n
matrices, then the i, jth element (AB)ij of their product is

(AB)ij =
n∑

k=1

aikbkj .

In general, matrix multiplication is not commutative, i.e. usually AB 6= BA. The difference
AB − BA is called the commutator of A and B and is usually denoted [A,B]. Under certain
conditions a matrix A may have an inverse, A−1, which satisfies AA−1 = 1. Here, 1 denotes the
unit matrix,

1 =




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1




.

Exercises

1. Which of the following matrices is hermitian

A =

(
2 i
i 1

)
B =

(
0 −i
i 0

)
C =




3 1 + 2i 0
1− 2i 4 2

0 2 0


 D =




i −1 0
1 0 1
0 1 0




2. Compute CD.

3. Compute [A,B].

4. Compute B2. What can you conclude about B−1?

5. Show that the unit matrix commutes with any matrix.

6. What can you say about the diagonal elements of an hermitian matrix?
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