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Quantum States 
 
1. The physical state of a quantum-mechanical system is represented by a vector in a 
Hilbert space, sometime called the “state vector.”  In Dirac notation, we label the state 
vector by the “ket” Ψ . 
 
2. We can represent the state vector by its components using any complete set of 
orthonormal basis states, the same way we do with ordinary vectors.  If the basis set is 

discrete, we write ∑
∞
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=Ψ
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n nc , where the vector “components” cn can be found from 

taking the inner product: Ψ= ncn .  If the basis is continuous, the sum is replaced by 

an integral: ( ) qqc∫
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=Ψ , where ( ) Ψ= qqc .  Our familiar “wave function” is just 

the representation of the state vector in the position basis: ( ) ( )txtx Ψ=Ψ ,  
 
3. In terms of wave functions, the inner product of two quantum states is defined by 
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4. An example of a continuous basis is the set of momentum eigenstates, which I’ll label 

by: kkkp h=ˆ .  In that basis we can write ( ) kk∫
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we use wavefunctions, we get our old Fourier transform expressions: 
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Physical Observables 
 
1. Physical observables are represented by Hermitian operators, which have a number of 
important properties: 
 i) their eigenvalues are real 
 ii) they have a complete set of eigenstates 
 iii) eigenstates with different eigenvalues are orthogonal 

iv) eigenstates with the same eigenvalue can be made orthogonal by using the 
Gram-Schmidt procedure 

There is one catch in infinite-dimensional vector spaces.  When the spectrum is 
continuous, the eigenstates are not normalizable – i.e. they are not in our Hilbert space.  
Fortunately that doesn’t matter, because we can still use them as basis vectors in the ways 
described above. 



2. If we measure any physical observable, the measurement yields one of the eigenvalues 
of the corresponding operator.  If the eigenvalue spectrum is discrete, the probability to 
obtain the nth eigenvalue as a result of the measurement is 

22 Ψ== ncP nn .  If the 

spectrum is continuous, the probability to obtain a result in the interval s  [ ]ba qq ,  i
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3. When we complete a measurement represented by the Hermitian operator Â  and 
obtain the nth eigenvalue of Â , then the quantum system has “collapsed” into the 
corresponding eigenstate of Â .  Repeated measurements of Â  will produce the same 
result.  If we then measure a second observable represented by another Hermitian 
operator B̂  with [ ] 0ˆ,ˆ ≠BA , the measurement of B̂ will disturb the system and will 
change the result of a further measurement of Â .  In this case Â  and B̂  are said to 
represent “incompatible observables.”  If, on the other hand, [ ] 0ˆ,ˆ =BA , then the 
measurement of B̂  does not change further measurements of Â .  In fact, we can find 
simultaneous eigenstates of Â  and B̂  in that case. 
 
4.  If our Hilbert space has a finite number of dimensions N, it is convenient to choose a 
basis and represent quantum states by column vectors whose entries are the vector 
components in that basis.  Operators are represented by matrices, with matrix elements 
defined by nAmAmn

ˆˆ = .  You know how to find the eigenvectors and eigenvalues of 

Â ; let’s label them this way: nnn aaA α=ˆ .   If your system is in the state Ψ , then a 

measurement of Â  will then produce the result nα  with probability 
22 Ψ= nn ac .  

The average (expectation) value of Â  can be calculated two ways (the first is easier to 

calculate, but the second contains more information): ∑
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5. The Hamiltonian is a special operator.  It not only represents the energy of the system, 
but it dictates the time dependence of the quantum states.  If the energy spectrum is 

discrete, we first write the initial quantum state as: ( ) ∑
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If you aren’t yet comfortable with Dirac notation, you can write this equation in terms of 
wavefunctions: 
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ψ , where the probability to measure energy En is 2

nc . 


