Scott Pratt

Do not open exam until instructed to do so.

2 pt Consider $\mathrm{A}=18 \mathrm{~kg}$ and $\mathrm{B}=2 \mathrm{~s}^{2}$. Please identify if the operations below are possible or not, and if they are, whether or not the answer given is correct.
\triangleright You can divide A by $\mathrm{B}(\mathrm{A} / \mathrm{B})$, and get $9 \mathrm{~kg} / \mathrm{s}^{2}$.

1. $\mathbf{A} \bigcirc$ This is impossible
\mathbf{B} This is possible, but the answer is false
$\mathbf{C} \bigcirc$ This is correct
\triangleright You can subtract B from $\mathrm{A}(\mathrm{A}-\mathrm{B})$, and get 16 kg .
2. $\mathbf{A} \bigcirc$ This is impossible
$\mathbf{B} \bigcirc$ This is possible, but the answer is false
$\mathbf{C} \bigcirc$ This is correct
$4 p t$ A rock is hurled upward from a high bridge with an initial upward speed of $30 \mathrm{~m} / \mathrm{s}$. Eventually, the rock lands in the river, 50 m below the initial release point. For the following statements, displacements are measured relative to the release point and the upward direction is positive.
\triangleright During the entire flight, the displacement of the rock is positive or zero.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright At its highest point, the rock has zero velocity.
4. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The maximum speed occurs on the way down at the instant when the rock passes the initial release point.
5. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright At its highest point, the rock has zero acceleration.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

4 pt Three identical airplanes with identical air speeds leave Kansas City. Airplane A leaves on Monday, a calm and windless day, and flies directly eastward to St. Louis. Airplanes B and C leave on Tuesday, when there is a strong north wind. Airplane B points the plane directly eastward and is blown off course, passing south of St. Louis, while Airplane C adjusts its direction to account for the wind and flies directly east to St. Louis.
\triangleright The plane(s) with the largest eastward component to its velocity is \qquad
7. $\mathbf{A} \bigcirc$ Airplane $A \quad \mathbf{B} \bigcirc$ Airplane B
$\mathbf{C} \bigcirc$ Airplane C $\mathbf{D} \bigcirc$ Airplanes A, B and C
$\mathbf{E} \bigcirc$ Airplanes A and C $\mathbf{F} \bigcirc$ Airplanes A and B
G \bigcirc Airplanes B and C
\triangleright The plane(s) that reaches St. Louis in the least amount of time is \qquad
8. $\mathbf{A} \bigcirc$ Airplane A $\mathbf{B} \bigcirc$ Airplane B
$\mathbf{C} \bigcirc$ Airplane C $\mathbf{D} \bigcirc$ Airplanes A, B and C
$\mathbf{E} \bigcirc$ Airplanes A and C $\mathbf{F} \bigcirc$ Airplanes A and B $\mathbf{G} \bigcirc$ Airplanes B and C
\triangleright The plane(s) with the lowest ground speed is \qquad
9. $\mathbf{A} \bigcirc$ Airplane $A \quad \mathbf{B} \bigcirc$ Airplane B
$\mathbf{C} \bigcirc$ Airplane C $\mathbf{D} \bigcirc$ Airplanes A, B and C
E \bigcirc Airplanes A and C $\mathbf{F} \bigcirc$ Airplanes A and B
G \bigcirc Airplanes B and C
\triangleright The plane(s) with the highest ground speed is \qquad
10. $\mathbf{A} \bigcirc$ Airplane $A \quad \mathbf{B} \bigcirc$ Airplane B
$\mathbf{C} \bigcirc$ Airplane C $\mathbf{D} \bigcirc$ Airplanes A, B and C
$\mathbf{E} \bigcirc$ Airplanes A and C $\quad \mathbf{F} \bigcirc$ Airplanes A and B G \bigcirc Airplanes B and C

Consider the cat burglar of mass 61 kg in the figure, where the angle $\theta=31$ degrees. What is the tension in the horizontal section of the cable?

(in N)

$\mathbf{1 1 . A} \bigcirc 478$	$\mathbf{B} \bigcirc 541$	$\mathbf{C} \bigcirc 611$	$\mathbf{D} \bigcirc 690$	
$\mathbf{E} \bigcirc 780$	$\mathbf{F} \bigcirc$	881	$\mathbf{G} \bigcirc 996$	$\mathbf{H} \bigcirc 1125$

$1 p t$ Goodyear Tire and Rubber Company wants to measure the coefficient of friction for a new miracle rubber compound by sliding a block down an inclined plane, where the surface of the block is coated with the new compound. If the block slides at constant velocity down the plane when the plane is inclined at an angle of 51 degrees, what is the kinetic coefficient of friction?

12. $\mathbf{A} \bigcirc 0.22$	$\mathbf{B} \bigcirc 0.30$	$\mathbf{C} \bigcirc$	0.39	$\mathbf{D} \bigcirc$	0.52
$\mathbf{E} \bigcirc 0.70$	$\mathbf{F} \bigcirc$	0.93	$\mathbf{G} \bigcirc 1.23$	$\mathbf{H} \bigcirc$	1.64

1 pt Nolan Ryan throws a rock horizontally from the roof of a tall building with an initial speed of $49 \mathrm{~m} / \mathrm{s}$. The rock travels a horizontal distance of 56 m before it hits the ground. From what height (above the ground) was the rock released? (in m)
$\mathbf{1 3 . A} \bigcirc 6.41 \quad \mathbf{B} \bigcirc 9.29$
$\mathbf{E} \bigcirc 28.32 \quad \mathbf{F} \bigcirc 41.06$
$\mathbf{C} \bigcirc 13.47$
D〇 19.53
$\mathbf{G} \bigcirc 59.54$
$\mathbf{H} \bigcirc 86.34$

Consider an Atwood machine with $m_{2}=7.7 \mathrm{~kg}$. The acceleration of m_{2} is measured to be $3.15 \mathrm{~m} / \mathrm{s}^{2}$ upward.
DATA: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$p t$ What is the tension in the rope? (in N)

$\mathbf{1 4 . A} \bigcirc 47.9$	$\mathbf{B} \bigcirc 54.2$	$\mathbf{C} \bigcirc 61.2$	$\mathbf{D} \bigcirc 69.2$
$\mathbf{E} \bigcirc 78.2$	$\mathbf{F} \bigcirc 88.3$	$\mathbf{G} \bigcirc 99.8$	$\mathbf{H} \bigcirc 112.8$

$p t$ If the blocks are initially at rest, how far will m_{2} have risen by 2.5 seconds? (in m)

| $\mathbf{1 5 . A} \bigcirc 1.78$ | $\mathbf{B} \bigcirc 2.37$ | $\mathbf{C} \bigcirc 3.15$ | $\mathbf{D} \bigcirc 4.18$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 5.56$ | $\mathbf{F} \bigcirc 7.40$ | $\mathbf{G} \bigcirc 9.84$ | $\mathbf{H} \bigcirc 13.09$ |

 frictionless mountain on the mythical planet Horatio which has an unknown acceleration of gravity. The skier begins at a height of 290 m above the surrounding plain. When the skier enters the flat plain, contact with the ground is no longer frictionless and the coefficient of friction is $\mu_{k}=0.19$. How far does the skier glide along the plain before coming to a stop? (in m)

16. $\mathbf{A} \bigcirc 345.3$	$\mathbf{B} \bigcirc 500.7$	$\mathbf{C} \bigcirc 726.0$	
$\mathbf{D} \bigcirc 1052.6$	$\mathbf{E} \bigcirc 1526.3$	$\mathbf{F} \bigcirc$	2213.2
$\mathbf{G} \bigcirc 3209.1$	$\mathbf{H} \bigcirc 4653.2$		

1 pt A $6.7-\mathrm{kg}$ bowling ball moves at $3.3 \mathrm{~m} / \mathrm{s}$. How fast must a 2.45 -g Ping-Pong ball move so that the two balls have the same kinetic energy? (in m/s)

| $\mathbf{1 7 . A} \bigcirc 18.6$ | $\mathbf{B} \bigcirc 26.9$ | $\mathbf{C} \bigcirc 39.0$ | $\mathbf{D} \bigcirc 56.6$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 82.1$ | $\mathbf{F} \bigcirc 119.0$ | $\mathbf{G} \bigcirc 172.6$ | $\mathbf{H} \bigcirc 250.2$ |

A 205 gram ball on a string swings from rest, beginning at an angle of 61 degrees with respect to the vertical. The speed of the ball when it reaches its lowest point is $248.2 \mathrm{~cm} / \mathrm{s}$. What is the length of the string? (in cm)

| $\mathbf{1 8 . A} \bigcirc 54$ | $\mathbf{B} \bigcirc 61$ | $\mathbf{C} \bigcirc 69$ | $\mathbf{D} \bigcirc 78$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 88$ | $\mathbf{F} \bigcirc 99$ | $\mathbf{G} \bigcirc 112$ | $\mathbf{H} \bigcirc 127$ |

$1 p t$ A ball is pushed down a hill with an initial velocity of $3.5 \mathrm{~m} / \mathrm{s}$. It accelerates down hill with a uniform acceleration of $2.6 \mathrm{~m} / \mathrm{s}^{2}$. The ball reaches the bottom of the hill in 13 seconds. What is its speed when it reaches the bottom of the hill? (in m/s)

$\mathbf{1 9 . A} \bigcirc 11.9$	$\mathbf{B} \bigcirc 15.9$	$\mathbf{C} \bigcirc 21.1$	$\mathbf{D} \bigcirc 28.0$
$\mathbf{E} \bigcirc 37.3$	$\mathbf{F} \bigcirc 49.6$	$\mathbf{G} \bigcirc 66.0$	$\mathbf{H} \bigcirc 87.8$

$1 p t$ A rocket, starting from rest, experiences a uniform acceleration of $20.3 \mathrm{~m} / \mathrm{s}^{2}$. What is its speed at the point where its displacement from its original location is 550 m ? (in m / s)

| $\mathbf{2 0 . A} \bigcirc 149.4$ | $\mathbf{B} \bigcirc 168.9$ | $\mathbf{C} \bigcirc 190.8$ | $\mathbf{D} \bigcirc 215.6$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 243.6$ | $\mathbf{F} \bigcirc 275.3$ | $\mathbf{G} \bigcirc 311.1$ | $\mathbf{H} \bigcirc 351.6$ |

Quadratic Formula

$a x^{2}+b x+c=0$,
$x=\left[-b \pm \sqrt{b^{2}-4 a c}\right] /(2 a)$

Geometry

Circle: circumference $=2 \pi R$, area $=\pi R^{2}$
Sphere: area $=4 \pi R^{2}$, volume $=4 \pi R^{3} / 3$
Trigonometry

$$
\begin{gathered}
\sin \alpha=\frac{A}{C}, \quad \cos \alpha=\frac{B}{C} \\
\tan \alpha=\frac{A}{B}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} \\
A^{2}+B^{2}-2 A B \cos \gamma=C^{2}
\end{gathered}
$$

Polar Coordinates
$x=r \cos \theta, \quad y=r \sin \theta, r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x$
SI Units and Constants

quantity	unit	abbreviation
Mass m	kilograms	kg
Distance x	meters	m
Time t	seconds	s
Force F	Newtons	$\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
Energy E	Joules	$\mathrm{J}=\mathrm{N} \mathrm{m}$
Power P	Watts	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Temperature T	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$	$T_{\circ}{ }_{\mathrm{F}}=32+(9 / 5) T_{\circ}{ }^{\circ} \mathrm{C}$
Pressure P	Pascals	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$

$1 \mathrm{cal}=4.1868 \mathrm{~J}, 1 \mathrm{hp}=745.7 \mathrm{~W}, 1$ liter $=10^{-3} \mathrm{~m}^{3}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}, 0^{\circ} \mathrm{C}=273.15^{\circ} \mathrm{K}, N_{A}=6.023 \times 10^{23}$
$R=8.31 \mathrm{~J} /\left(\mathrm{mol}^{\circ} \mathrm{K}\right)=0.0821 \mathrm{~L} \mathrm{~atm} /(\mathrm{mol} \mathrm{K})$,
$k_{B}=R / N_{A}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
$v_{\text {sound }}=331 \sqrt{T / 273} \mathrm{~m} / \mathrm{s}$
$\mathrm{H}_{2} 0: c_{\text {ice }, \text { liq.,steam }}=\{0.5,1.0,0.48\} \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$

$$
L_{F, V}=\{79.7,540\} \mathrm{cal} / \mathrm{g}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

1-d motion, constant a
$\Delta x=(1 / 2)\left(v_{0}+v_{f}\right) t$
$v_{f}=v_{0}+a t$
$\Delta x=v_{0} t+(1 / 2) a t^{2}$
$\Delta x=v_{f} t-(1 / 2) a t^{2}$
$(1 / 2) v_{f}^{2}-(1 / 2) v_{0}^{2}=a \Delta x$
Range: $R=\left(v_{0}^{2} / g\right) \sin 2 \theta$
Forces, Work, Energy, Power, Momentum \& Impulse
$F=m a$, Gravity: $F=m g, P E=m g h$
Friction: $f=\mu N$, Spring: $F=-k x, P E=(1 / 2) k x^{2}$
$W=F x \cos \theta, K E=(1 / 2) m v^{2}, P=\Delta E / \Delta t=F v$
$p=m v, I=F \Delta t=\Delta p$
$X_{c m}=\left(m_{1} x_{1}+m_{2} x_{2}+\cdots\right) /\left(m_{1}+m_{2}+\cdots\right)$
Elastic coll.s: $v_{1}^{\prime}-v_{2}^{\prime}=-\left(v_{1}-v_{2}\right)$

Rotational Motion

$\Delta \theta=(1 / 2)\left(\omega_{0}+\omega_{f}\right) t, \omega_{f}=\omega_{0}+\alpha t$
$\Delta \theta=\omega_{0} t+(1 / 2) \alpha t^{2}=\omega_{f} t-(1 / 2) \alpha t^{2}$
$\alpha \Delta \theta=(1 / 2) \omega_{f}^{2}-(1 / 2) \omega_{0}^{2}$
$\omega=2 \pi / T=2 \pi f, f=1 / T$
Rolling: $a=\alpha r, v=\omega r$
$a_{c}=v^{2} / r=\omega v=\omega^{2} r$
$\tau=r F \sin \theta=I \alpha, I_{\text {point }}=m R^{2}$
$I_{\text {cyl.shell }}=M R^{2}, I_{\text {sphere }}=(2 / 5) M R^{2}$
$I_{\text {solid cyl. }}=(1 / 2) M R^{2}, I_{\text {sph. shell }}=(2 / 3) M R^{2}$
$L=I \omega=m v r \sin \theta,(\theta=$ angle between v and r$)$
$K E=(1 / 2) I \omega^{2}=L^{2} /(2 I), W=\tau \Delta \theta$
Gravity and circular orbits
$P E=-G \frac{M m}{r}, \Delta P E=m g h($ small $h)$

$$
F=G \frac{M m}{r^{2}}, \quad \frac{G M}{4 \pi^{2}}=\frac{R^{3}}{T^{2}}
$$

Gases, liquids and solids
$P=F / A, P V=n R T, \Delta P=\rho g h$
$\left\langle(1 / 2) m v^{2}\right\rangle=(3 / 2) k_{B} T$
ideal monotonic gas: $U=(3 / 2) n R T=(3 / 2) P V$
$F_{\text {bouyant }}=\rho_{\text {displaced liq. }} . V_{\text {displaced liq. }} g$
Stress $=F / A$, Strain $=\Delta L / L, Y=$ Stress/Strain
$\frac{\Delta L}{L}=\frac{F / A}{Y}, \frac{\Delta V}{V}=\frac{-\Delta P}{B}, Y=3 B$
Continuity: $\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
Bernoulli: $P_{a}+\frac{1}{2} \rho_{a} v_{a}^{2}+\rho_{a} g h_{a}=P_{b}+\frac{1}{2} \rho_{b} v_{b}^{2}+\rho_{b} g h_{b}$
Thermal
$\Delta L / L=\alpha \Delta T, \Delta V / V=\beta \Delta T, \beta=3 \alpha$
$Q=m C_{v} \Delta T+m L$ (if phase trans.)
Conduction and Radiation
$P=k A\left(T_{b}-T_{a}\right) / L=A\left(T_{b}-T_{a}\right) / R, R \equiv L / k$
$P=e \sigma A T^{4}$
Thermodynamics
$\Delta U=Q+W, \quad W=-P \Delta V, Q=T \Delta S, \Delta S>0$
Engines: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=W / Q_{H}<\left(T_{H}-T_{L}\right) / T_{H}<1$
Refrigerators and heat pumps: $W=\left|Q_{H}\right|-\left|Q_{L}\right|$
$\epsilon=Q_{L} / W<T_{L} /\left(T_{H}-T_{L}\right)$

Simple Harmonic Motion and Waves

$f=1 / T, \omega=2 \pi f$
$x(t)=A \cos (\omega t-\phi), v=-\omega A \sin (\omega t-\phi)$
$a=-\omega^{2} A \cos (\omega t-\phi)$
Spring: $\omega=\sqrt{k / m}$
Pendulum: $T=2 \pi \sqrt{L / g}$
Waves: $y(x, t)=A \sin [2 \pi(f t-x / \lambda)+\delta], v=f \lambda$
$I=\mathrm{const} A^{2} f^{2}, I_{2} / I_{1}=R_{1}^{2} / R_{2}^{2}$
Standing waves: $\lambda_{n}=2 L / n$
Strings: $v=\sqrt{T / \mu}$
Solid/Liquid: $v=\sqrt{B / \rho}$
Sound: $I=$ Power $/ A=I_{0} 10^{\beta / 10}, I_{0} \equiv 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Decibels: $\beta=10 \log _{10}\left(I / I_{0}\right)$
Beat freq. $=\left|f_{1}-f_{2}\right|$
Doppler: $f_{\text {obs }}=f_{\text {source }}\left(V_{\text {sound }} \pm v_{\text {obs }}\right) /\left(V_{\text {sound }} \pm v_{\text {source }}\right)$
Pipes: same at both ends: $L=\lambda / 2, \lambda, 3 \lambda / 2$
Pipes: open at only one end: $L=\lambda / 4,3 \lambda / 4,5 \lambda / 4 \cdots$

