
Physics 472 – Spring 2008 
 

Homework #12, due Friday, April 25  
(Point values are in parentheses.) 

 
 
1. [3]  Griffiths problem 12.1.   
  
 
2. [5] The Einstein-Podolsky-Rosen “paradox” is based on the unusual properties of entangled 

states in quantum mechanics.  One of the simplest examples is two particles in a spin singlet: 
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 Things get interesting if we send particle 1 to detector A, and particle 2 to detector B, where the 
two detectors are on opposite sides of the room.  Each detector is a Stern-Gerlach apparatus 
whose axis can be set to any angle θ from the z-axis, in the x-z plane.   

  
 a) Show that iΨ  has the same form regardless of what basis we choose.  In other words, rewrite 

iΨ  in terms of the eigenstates of nS ˆ⋅
r

, where n  is a unit vector pointing at an arbitrary angle θ 
from the z-axis, in the x-z plane.  This result shows that, no matter what direction the Stern-
Gerlach detectors are pointed, the two detectors will always register opposite spin directions for 
the two particles 

ˆ

if the detectors are oriented along the same axis.   
  
 b) The preceding result can be obtained in a more complicated (but perhaps more revealing) way 

if we model the measurement process using projection operators.  If detector A is oriented along 
the θ direction, and if we detect particle 1 as pointing “up” along that direction, then the state is 
projected onto: 
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 Write iΨ  in the initial state in the Sz basis, as I did at the beginning of this problem, and plug it 

into this formula to find fΨ .  After you have an expression for fΨ  in the Sz basis, re-write it 

in the nS ˆ⋅
r

 basis.  It should immediately become clear from your result what detector B must 
measure, if it is oriented along the same direction.  (Note that fΨ  is not normalized, because 
we have projected out only a part of the original state.) 

 
 
3. [5] Griffiths problem 4.50.  If you prefer, the relation to be shown can be re-written as: 
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 where the expectation value is to be evaluated in the two-particle singlet state iΨ  written 

above.  Hint:  Choose  along the z-axis, and b  in the x-z plane at an angle θ from the z-axis.â ˆ



 
4. [7] To test Bell’s inequality in an EPR type experiment, the Stern-Gerlach detectors A and B 

must be allowed to be oriented in different directions.  Let detector A, which will measure 
particle 1, be oriented at an angle θ from the z-axis, in the x-z plane.  Detector B is oriented at an 
angle φ from the z-axis, also in the x-z plane. 

 
 a) Re-write iΨ  in terms of the basis states 

)1(

↑θ  and 
)1(

↓θ  for particle 1, and 
)2(

↑φ and 
)2(

↓φ  for particle 2.  Recall the basis transformations: 
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 b) If a detector measures the spin to be parallel to the detector orientation (“up” in that basis), 

we’ll call that result +1.  If the spin is antiparallel, or “down”, we’ll call that result -1.  Evaluate 
the four probabilities: P(1,1), P(-1,-1), P(1,-1), and P(-1,1) with the two detectors oriented at 
angles θ and φ, respectively.  Your results should look somewhat similar to those you obtained on 
last week’s homework, with the following differences:  

  i) The angle appearing as the argument of the trig functions is now (φ-θ)/2.  The factor 2 comes 
because we are now discussing spin-1/2 particles rather than photons. 

  ii) The sine and cosine are reversed, because if the two detectors are oriented in the same 
direction and one spin is observed to be “up”, then the other will be observed to be “down.”  
With photons, the two photons were observed to have the same direction of linear polarization. 

 
 c) Calculate the average product of the two signals E(θ,φ) = P(1,1) + P(-1,-1) - P(1,-1) - P(-1,1).  

Your answer should be consistent with your answer to the previous problem (Griffiths 4.50). 
 
 d) Imagine that each detector can be oriented in two different directions, which can be different 

for the two detectors.  For detector A, call them θ and θ’, for detector B, call them φ and φ’. 
 
 Define S = E(θ,φ) + E(θ’,φ) + E(θ’,φ’) - E(θ,φ’) 
 
 Calculate S for θ = 0;  θ’= π/2;  φ = 0;  φ’ = π/2.  Can an experiment with these detector 

orientations distinguish between the predictions of quantum mechanics and those of a “hidden-
variable” theory?  Recall that John Bell showed that a hidden variable theory will always produce 
the result -2 < S < 2. 

 
 Calculate S for θ = 0;  θ’= π/2;  φ = π/4;  φ’ = 3π/4.  Answer the same question as above. 
 
 


