1. [7] In Physics 471, we solved the isotropic 2-dimensional harmonic oscillator problem by writing the Hamiltonian as a sum of x and y Hamiltonians:

$$\hat{H}^0 = \frac{\hat{p}^2_x + \hat{p}^2_y}{2m} + \frac{1}{2}m\omega^2(x^2 + y^2) = \hat{H}_x^0 + \hat{H}_y^0$$

with $[\hat{H}_x^0, \hat{H}_y^0] = 0$. We then found simultaneous eigenstates of \hat{H}_x^0 and \hat{H}_y^0, which obey $\hat{H}_i^0 |n_x, n_y\rangle = (n_x + n_y + 1)\hbar \omega |n_x, n_y\rangle$.

a) Consider the perturbation $\lambda \hat{H}' = \lambda m\omega^2 \hat{x}\hat{y}$. Calculate the first and second order energy shifts of the ground state. In class, we used $\hat{X} = \sqrt{\frac{\hbar}{2m\omega}}(a_x^+ + a_x)$ to evaluate the matrix elements:

$$\langle n_x | x | n_x \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n_x} \delta_{n_x, n_x - 1} + \sqrt{n_x + 1} \delta_{n_x, n_x + 1} \right)$$

$$\langle n_y | y | n_y \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n_y} \delta_{n_y, n_y - 1} + \sqrt{n_y + 1} \delta_{n_y, n_y + 1} \right)$$

To evaluate the matrix elements of \hat{H}' in the $|n_x, n_y\rangle$ tensor product states, use:

$$\langle n_x', n_y' | xy | n_x, n_y \rangle = \langle n_x' | x | n_x \rangle \langle n_y' | y | n_y \rangle$$

b) Now use degenerate P.T. to calculate the first-order energy shifts of the first excited states, as well as the “correct” linear combinations of those two states that diagonalize \hat{H}'.

c) The full Hamiltonian, $\hat{H} = \hat{H}^0 + \lambda \hat{H}'$, is exactly solvable if you make the coordinate transformation $u = (x + y)/\sqrt{2}$, $v = (x - y)/\sqrt{2}$. Express \hat{H} in terms of u, v, and their conjugate momenta P_u and P_v. You should find that the harmonic oscillator in the “u” direction has a slightly larger frequency than before, while in the “v” direction the frequency is slightly lower. Calculate the exact energies of the new basis states $|n_u, n_v\rangle$. For the ground state, expand the energy to second order in λ. For the next two states, expand the energies to first order in λ. Compare your results with those you obtained in parts (a) and (b).

2. [7] Consider an electron in a 3-dimensional harmonic oscillator potential, in the presence of a uniform magnetic field $\tilde{B} = B \omega \hat{k}$. The full Hamiltonian for the system is:

$$\hat{H} = \frac{\hat{p}^2_x + \hat{p}^2_y + \hat{p}^2_z}{2m} + \frac{1}{2}m\omega^2(x^2 + y^2 + z^2) + \frac{eB}{2m}(L_z + 2S_z)$$

This problem is exactly solvable, but we’ll use the machinery of perturbation theory to get started. Treat the first two terms of \hat{H} as \hat{H}^0, and the Zeeman term as \hat{H}'. The eigenstates of
\(H^0 \) satisfy:
\[
\hat{H}^0 |n_z, n_y, n_z, m_z\rangle = \left(n_z + n_y + n_z + \frac{3}{2}\right) \hbar \omega |n_z, n_y, n_z, m_z\rangle,
\]
where \(m_z = \pm \frac{1}{2} \), and
\[
\hat{S}_z |n_z, n_y, n_z, m_z\rangle = \hbar m_z |n_z, n_y, n_z, m_z\rangle.
\]
(I am putting the space and spin quantum numbers together inside the same ket to avoid using the cumbersome tensor product notation.) On Homework Set 10 of Physics 471, you showed that we can write \(\hat{L}_z \) in terms of the standard harmonic oscillator raising and lowering operators:
\[
\hat{L}_z = i\hbar (a_x a_x^\dagger - a_y a_y^\dagger).
\]

a) The ground state of \(H^0 \) is 2-fold degenerate, due to spin. But since the two \(|0,0,0,m_z\rangle\) states are already eigenstates of \(H' \), you can use standard first-order perturbation theory to calculate the energy shifts due to the magnetic field. Express your answers in terms of \(\mu_B B_{\text{ext}} \) and \(m_z \).

b) The first excited state of \(H^0 \) is six-fold degenerate (3 spatial states \(\times \) 2 spin states). Calculate the linear combinations of states that diagonalize \(H' \). To help you keep track of what you are doing, here are some suggestions. First, since all your states are eigenstates of \(S_z \), leave spin out of the problem until the end; then you only have to diagonalize a 3 \(\times \) 3 matrix rather than a 6 \(\times \) 6 matrix. Since the original basis states \(|n_z, n_y, n_z, m_z\rangle\) are not eigenstates of \(\hat{L}_z \), you need to find linear combinations of them that are. Label the new states this way: \(|n,l,m_z,m_z\rangle\), where \(n = n_x + n_y + n_z \). You don’t need to know \(l \) to do this problem – you just need \(m_z \). But you can probably guess what \(l \) is once you know what \(m_z \) is for the three states. Finally, when you have found the states that diagonalize \(H' \), calculate the Zeeman energy shifts of those states. How many distinct energies are there? Make a plot of energy vs. \(\mu_B B_{\text{ext}} \) for all the states.

c) The second excited state of \(H^0 \) is twelve-fold degenerate (6 spatial states \(\times \) 2 spin states). Forget about spin altogether so you don’t get lost. Construct the 6 \(\times \) 6 matrix representation of \(\hat{L}_z \). If you choose the order of your 6 states judiciously, your 6 \(\times \) 6 matrix should break up into a 2 \(\times \) 2 block, a 3 \(\times \) 3 block, and a 1 \(\times \) 1 block. Calculate the eigenvalues of \(\hat{L}_z \) and their degeneracies. Guess what the values of \(l \) are for this six-dimensional subspace. Don’t bother to calculate the 12 Zeeman energies – I know you could do it if you had to!

3. [6] We did Griffiths problem 6.36 in class on February 13. We used two symmetries to figure out which matrix elements of the form \(\langle n', l', m'_z | z | n, l, m_z \rangle \) are zero. The first was rotational symmetry:
\[
\left[\hat{z}, \hat{L}_z \right] = 0 \quad \text{implies} \quad \langle n', l', m'_z | z | n, l, m_z \rangle = 0.
\]
The second was parity:
\[
\hat{\Pi} \hat{z} \hat{\Pi} = -\hat{z} \quad \text{implies} \quad (-1)^{l'+l} \langle n', l', m'_z | z | n, l, m_z \rangle = -\langle n', l', m'_z | z | n, l, m_z \rangle.
\]
Use these same symmetries to do Griffiths problem 6.37. First, show which elements of the 9 \(\times \) 9 matrix are zero. Then calculate the first non-zero matrix element, \(\langle 3, 0, 0 | z | 3, 1, 0 \rangle \), using Tables 4.3 and 4.7 in Griffiths. Use Mathematica to do the radial integration. You can take the values of the other nonzero matrix elements from Griffiths. Construct the 9 \(\times \) 9 matrix representation of \(\hat{z} \). If you choose the order of the 9 states carefully, then the matrix should break into a 3 \(\times \) 3 block, two 2 \(\times \) 2 blocks, and two trivial 1 \(\times \) 1 blocks. Calculate the eigenvalues and their degeneracies. Don’t forget to multiply the eigenvalues by \(eE_{\text{ext}} \) to get the energies.