Mechanics 1

Introduction to Classical Mechanics

1 HISTORY

Isaac Newton solved the premier scientific problem of his day, which was to explain
the motion of the planets. He published his theory in the famous book known
asPrincipia. The full Latin title of the book may be translated into English as
Mathematical Principles of Natural Philosophy

The theory that the planets (including Earth) revolve around the sun was pub-
lished by Nicolaus Copernicus in 1543. This was a revolutionary idea! The picture
of the Universe that had been developed by astronomers before Copernicus had the
Earth at rest at the center, and the sun, moon, planets and stars revolving around
the Earth. But this picture failed to explain accurately the observed planetary posi-
tions. The failure of the Earth-centered theory led Copernicus to consider the sun
as the center of planetary orbits. Later observations verified the Copernican theory.
The important advances in astronomical observations were made by Galileo and
Kepler.

Galileo Galilei was perhaps the most remarkable individual in the history of
science. His experiments and ideas changed both physics and astronomy. In
physics he showed that the ancient theories of Aristotle, which were still accepted
in Galileo’s time, are incorrect. In astronomy he verified the Copernican model of
the Universe by making the first astronomical observations with a telescope.
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Galileo did not invent the telescope but he made some of the earliest telescopes,
and his telescopes were the best in the world at that time. Therefore he discovered
many things about the the solar system and stars:

craters and mountains on the moon

the moons of Jupiter

the phases of Venus

the motion of sunspots

the existence of many faint stars

These discoveries provided overwhelming evidence in favor of the Copernican
model of the solar system.

Johannes Kepler had extensive data on planetary positions, as functions of time,
from observations collected earlier by Tycho Brahe. He analyzed the data based on
the Copernican model, and deduced three empirical laws of planetary motion:

Kepler's Laws
1. The planets move on elliptical orbits with the sun at one focal point.
2. The radial vector sweeps out equal areas in equal times.

3. The square of the period of revolution is proportional to the cube of the
semimajor axis of the ellipse.

Newton started with the results of Galileo and Kepler. His goal, then, was to
explain why. Why do the planets revolve around the sun in the manner discovered
by Galileo and Kepler? In particular, what is the explanation for theathematical
regularitiesin Kepler’'s laws of orbital motion? To answer this question, Newton
had to develop the laws of motion and the theory of universal gravitation. And, to
analyze the motion he invented a new branch of mathematics, which we now call
Calculus

The solution to planetary motion was publishedPirncipia in 1687. Newton
had solved the problem some years earlier, but kept it secret. He was visited in
1684 by the astronomer Edmund Halley. Halley asked what force would keep the
planets in elliptical orbits. Newton replied that the force must be an inverse-square
law, which he had proven by mathematical analysis; but he could not find the paper
on which he had written the calculations! After further correspondence, Halley
realized that Newton had made great advances in physics but had not published the
results. With Halley’s help, Newton publishé&dincipia in which he explained his
theories of motion, gravity, and the solar system.
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After the publication ofPrincipia, Newton was the most renowned scientist

in the world. His achievement was fully recognized during his lifetime. Today
scientists and engineers still use Newton’s theory of mechanics. In the 20th century
some limitations of Newtonian mechanics were discovered: Classical mechanics
breaks down for extreme speeds (approaching the speed of light) and at atomic
dimensions. The theory of relativity, and quantum mechanics, were developed
in the early 20th century to describe these cases. But for macroscopic systems
Newton's theory is valid and extremely accurate.

This early history of science is quite relevant to the study of calculus. New-
ton used calculus for analyzing motion, although he published the calculations in
Principia using older methods of geometrical analysis. (He feared that the new
mathematics—calculus—would not be understood or accepted.) Ever since that
time, calculus has been necessary to the understanding of physics and its applica-
tions in science and engineering. So our study of mechanics will often require the
use of calculus.
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2 POSITION, VELOCITY, AND ACCELERATION
2.1 Position and velocity

Suppose an object M moves along a straight fingVe describe its motion by
giving the positionz as a function of time, as illustrated in Fig. 1. The variable

x is thecoordinate i.e., the displacement from a fixed pointalled theorigin.
Physically, the line on which M moves might be pictured as a road, or a track.
Mathematically, the positions form a representation of the ideal real line. The
coordinatex is positive if M is to the right of0, or negative if to the left. The
absolute valuéz| is the distance fromd. The possible positions of M are in one-
to-one correspondence with the set of real numbers. Heogitionis a continuous
functionz(t) of the independent variabletime.

Figure 1. An example of po-

sition x as a function of time x [m]
t for an object moving in one T
dimension. The object starts at
rest at the origin at = 0, be-
gins moving to positiver, has
positive acceleration for about
1second, and then gradually
slows to a stop at a distance of
1 m from the origin.

Example 2-1. What is the position as a function of time if M is at rest at a point
5m to the left of the origin?

Solution. Because M is not moving, the functiarit) is just a constant,
x(t) = —Hm. (2-1)

Note that the position has both a numbeis] and a unit (m, for meter). In this
case the number is negative, indicating a position to the left oThe number
alone is not enough information. The unit is required. The unit may be changed by
multiplying by a conversion factor. For example, the conversion from meters (m)
to inches (in) is

3B 90, (2-2)
m

S5m=>5m X

(There are 38 inches per meter.) So, the position could just as well be written as

z(t) = —190in. (2-3)

2We'll call the moving object M. The letter M could stand for “moving” or “mass.”
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Equations (2-3) and (2-1) are equivalent. This example shows why the number
alone is not enough: The number depends on the unit.

A Comment on Units of Measurement. In physical calculations it is important

to keep track of the units of measurment—treating them as algebraic quantities.
Dropping the unit will often lead to a failed calculation. Keeping the units has a
bonus. Itis a method of error checking. If the final unit is not correct, then there
must be an error in the calculation; we can go back and figure out how to correct
the calculation.

Example 2-2. A car travels on a straight road, toward the East, at a constant speed
of 35mph. Write the position as a function of time. Where is the car after 5
minutes?

Solution. The origin is not specified in the statement of the problem, so let’s say
thatx = 0 attimet = 0. Then the position as a function of time is

z(t) = + (35?3) t, (2-4)

where positiver is east of the origin. Equation (2-4) is based on the formula
distance = speesd time,

familiar from grade school; or, taking account of the signs,
displacement = velocity time.

Any distance must be positive. ‘Displacement’ may be positive or negative. Simi-
larly, ‘speed’ must be positive, but ‘velocity’ may be positive or negative, negative
meaning that M is moving to smaller

After 5 minutes, the position is

z(bmin) = 35? X 5min
r
= 35Ei X Hmin X Lhr
N hr i 60 min
= 2.917mi. (2-5)

(We multiply by the conversion factod, hr/60 min, to reduce the units.) The
position could be expressed in feet, as

280 ft
2(5min) = 2.917 mi x 5180. = 15400 ft. (2-6)
mi

So, after 5 minutes the car is 15400 feet east of its initial position.
* x %

It is convenient to record some general, i.e., abstract formulas. If M is at rest at
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xo, then the function:(¢) is

x(t) = xo. (object at rest) (2-7)
If M moves with constant velocity, then

x(t) = xo + vot. (object with constant velocity) (2-8)

Figure 2 illustrates graphs of these functions. The abscissa (horizontal axis) is the

independent variable and the ordinate (vertical axis) is the dependent variable

The slope in the second graphuis Note that the units ofy must be a length unit

divided by a time unit, because
rise Az

vy = slope = — =

run At (2-9)

for example, the units could be m/s. Now, recall from calculus that the slope in a
graph is equal to the derivative of the function! Thilng derivative of the position
x(t) is the velocity(t).

1 (a)
X0
Figure 2: Motion of an object: t
(a) zero velocity and (b) con-
stant positive velocity. X (b)
slope = vp
X0
t

So far we have considered only constant velocity. If the velocity is not constant,
then theinstantaneous velocitgt a timet is the slope of the curve af versust,
i.e., the slope of the tangent line. Again, this is precisely the derivativg©f
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Letting v(¢) denote the velocity,

Azx  dx
t)= lim — = —. 2-10
olt) = im N = @ (2-10)
Another notation for the time-derivative, often used in mechanidgtis= dx/dt.
Because(t) is defined by the limitAt — 0, there is an instantaneous velocity at
everyt. We summarize the analysis by a definition:

Definition. The velocityv(t) is a function of timet, defined by
v(t) = dx/dt.

2.2 Acceleration
If the velocity is changing then the object M is accelerating. &beelerationis
defined as the time-derivative of the velocity,

. Av o dv L i
a(t) = AI%I_I}O N ERrTS (definition of acceleration) (2-11)

By taking the limitA¢t — 0, the acceleration is defined at every instant. Also,
because = dx/dt, the acceleration is thesecond derivativef x(t),

T, (2-12)

Example 2-3. A car accelerates away from a stop sign, starting at rest. Assume the
acceleration is a constafim/s* for 3 seconds, and thereaftertis(a) What is the

final velocity of the car? (b) How far does the car travel from the stop sign in 10
seconds?

Solution. (a) Let the origin be the stop sign. During the 3 seconds while the car is
accelerating, the acceleration is constant and so the velocity function must be

v(t) = at, (2-13)

because the derivative ot (with respect ta) is a. Note thatv(0) = 0; i.e., the
car starts from rest. At= 3s, the velocity is the final velocity,

vf = v(3s) =53 x 3s = 15 —. (2-14)
S S
(b) The position as a function of time igt), and

dx

— =(t). 2-15
=) (2-15)
Equation (2-15) is called differential equationfor x(¢). We know the deriva-
tive; what is the function? The general methods for solving differential equations
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general equations for constant acceleration

position  z(t) = zo + vot + sat?
velocity  v(t) = da/dt = vot + at

acceleration a(t) = dv/dt = a, constant

Table 1: Formulae for constant acceleratiomy & initial position, vg = initial
velocity, anda = acceleration.)

involve integration. For this simple case the integral is elementary,

z(t) = z(0) + /Ot v(t)dt (2-16)

Please be sure that you understand why (2-16) is correct.

Before we try to do the calculation, let's make sure we understand the problem.
The car moves with velocity(t) = at (constant acceleration) for 3 seconds. How
far does the car move during that time? Thereafter it moves with constant velocity
ve = 15m/s. How far does it move fromm = 3sto¢t = 10s? The combined
distance is the distance traveled in 10s.

Well, we can calculate the postion by the integral in (2-16). The initial position
isz(0) = 0. The velocity functuion it for ¢t from 0 to 3 s; and(t) is v fort > 3
s. Thus, fort = 10 s,

3 10
x(t) = / atdt—i—/ vedt
0 3
= 3a(38)? +ve(7s)

= 127.5m.

After 10 seconds the car has moved 127.5 meters.

Generalization. Some useful general formulae for constant acceleration are recorded
in Table 1. In the tabley is a constant equal to the velocityiat 0. Also, zq is a

constant equal to the positiontat 0. As an exercise, please verify that= dv/dt

andv = dz/dt. Remember that, andv, are constants, so their derivatives are

The velocity and position as functions ofor constant acceleration are illustrated

in Fig. 3.

Example 2-4. A stone is dropped from a diving platfori® m high. When does it
hit the water? How fast is it moving then?

Solution. \We’'ll denote the height above the water surfaceyfy). The initial
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v [m/s]

Figure 3: Constant acceler- slope = a

ation. The two graphs are Vo
(a) velocityv(t) and (b) posi- t [s]
tion z(t) as functions of time,

for an object with constant ac-

: x [m]
celerationa. Note that the
slope increases with time in
the lower graphWhy?
slope = v(t)
X0
t [s]

height isyy = 10m. The initial velocity isvy; because the stone is dropped, not
thrown, its initial velocityv, is 0. The acceleration of an object in Earth’s gravity,
neglecting the effects of air resistantés « = —g whereg = 9.8m/s*. The
acceleratioru is negative because the direction of acceleration is downward; i.e.,
the stone accelerates toward smailetJsing Table 1, the equation for positign

as a function of is

y(t) = yo — 39t2 (2-17)

The variabley is the height above the water, so the surface js=at0. The timet
when the stone hits the water is obtained by solvjfig) = 0,

yo — 39t = 0. (2-18)

The time is

2 2% 1
b= 20 = 2Oy s (2-19)
g 9.8m/s

Note how the final unit came out to be seconds, which is correct. The time to fall
to the water surface 643 seconds.

3Air resistance is a frictional force called “drag,” which depends on the size, shape, surface
roughness, and speed of the moving object. The effect on a stone falling 10 m is small.
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The equation for velocity is

dy
t) = — = —gt. 2-20
u(t) = - =g (2-20)
This is consistent with the second row in Table 1, becayse 0 anda = —g.

The velocity when the stone hits the water is
v = o(tf) = —9.8 5 x 1.435 = —14.0 = (2-21)
S S

The velocity is negative because the stone is moving downward. Thefiaats
the absolute value of the velocity}.0 m/s.

2.3 Newton’s second law

Newton’s second law of motion states that the acceleratiohan object is pro-
portional to thenet forceF acting on the object,
F
a=—, (2-22)
m
or F = ma. The constant of proportionality: is themassof the object. Equation
(2-22) may be taken as thiefinitionof the quantitym, the mass.

A Comment on Vectors. For two- or three-dimensional mo-
tion, the position, velocity, and accleration are all vectors—
mathematical quantities with both magnitude and direction. We
will denote vectors byoldface symbols, e.g.x for position,v

for velocity, anda for acceleration. In hand-written equations,
vector quantities are usually indicated by drawing an arrewy (
over the symbol.

Acceleration is a kinematic quantity—determined by the motion. Equation (2-
22) relates acceleration and for@ut some other theory must determine the force
There are only a few basic forces in nature: gravitational, electric and magnetic,
and nuclear. All observed forces (e.g., contact, friction, a spring, atomic forces,
etc.) are produced in some way by those basic forces. Whatever force is acting on
an object, (2-22) states how that force influences the motion of the object (accord-
ing to classical mechanics!).

The massn in (2-22) is called thénertial mass because it would be determined
by measuring the acceleration produced by a given force. For example, if an object
is pulled by a spring force dfo N, and the resulting acceleration is measured to be
5m/<, then the mass is equal 10 kg.

The gravitational force is exactly (i.e., as precisely as we can measure it!) pro-
portional to the inertial mass. Therefore the acceleration due to gravity is indepen-
dent of the mass of the accelerating object. For example, at the surface of the Earth,
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all falling objects have the same acceleration due to grayity,9.8 m/s’ (ignoring

the force of air resistanép It took the great genius of Galileo to see that the small
differences between falling objects are not an effect of gravity but of air resistance.
Newton’s equatiom = F /m explains why: Thdorceof gravity is proportional to

the mass; therefore tteecelerationby gravity is independent of the mass.

The equatiorF' = ma tells us how an object will respond to a specified force.
Because the acceleratiaris a derivative,
dv  d’x
a=—=—, 2-23
dt  dt? ( )
Newton's second law is differential equation To use Newtonian mechanics, we
must solve differential equations.

“Take a sheet of paper and drop it. It falls slowly and irregularly, not moving straight down but
fluttering this way and that, because of aerodynamic forces. But wad the same piece of paper up into
a small ball and drop it. Then it falls with the same acceleration as a more massive stone.
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3 PROJECTILE MOTION

An ideal projectile is an object M moving in Earth’s gravity with no internal propul-
sion, and no external forces except gravity. rgfal projectile is also subject to
aerodynamic forces such as drag and lift. We will neglect these forces, a fairly
good approximation if M moves slowly.)

The motion of a projectile must be described witlo coordinates: horizontal
(x) and vertical {). Figure 4 shows the motion of the projectile in thecoordinate
system. The curve is theajectoryof M.

Figure 4: Projectile motion.

Horizontal &) and vertical {)) Voy ]
axes are set up to analyze the ‘ Vo
motion. The initial position is
(z,y) = (x0,y0). The initial
velocity vy is shown as a vec-
tor at (zo,y0). The curve is vo
the trajectory of the projectile.
The inset shows the initial ve-
locity vectorv, separated into
horizontal and vertical compo-  yg T
nents,vo,i and vo,j; 0 is the !
angle of elevation ofrg. (i = X
unit horizontal vectorj = unit
vertical vector)

A
Vox i

Suppose Mis released(@t, y) = (xo, yo) attimet = 0. Figure 4 also indicates
the initial velocity vectow, which is tangent to the trajectory @to, yo). Letd be
the angle of elevation of the initial velocity; then theandy components of the
initial velocity vector are

Vog = Wocosb, (3-1)
voy = vpsind. (3-2)
Horizontal component of motion. The equations for the horizontal motion are

z(t) = 0+ voul, (3-3)
vp(t) = vz (3-4)

These are the equations for constant veloaity,= vg,. There is no horizontal
acceleration (neglecting air resistance) because the gravitational force is vertical.
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Vertical component of motion. The equations for the vertical motion are

y(t) = yo+voyt — 5gt2, (3-5)
vy(t) = wvoy — gt. (3-6)

These are the equations for constant acceleratipn= —g. (As usual,g =
9.8m/s’.) The vertical force i, = —mg, negative indicating downward, where

m is the mass of the projectile. The acceleration,js= F;/m by Newton’s sec-

ond law® Thusa, = —g. The acceleration due to gravity does not depend on the
mass of the projectile because the force is proportional to the mass. Thus (3-5) and
(3-6) are independent of the mass.

Example 3-5. \erify that the derivative of the position vector is the velocity vector,
and the derivative of the velocity vector is the acceleration vector, for the projectile.

Solution. Position, velocity, and acceleration are \adictors The position vector
is

x(t) = z(t)i + y(t)]. (3-7)

Herei denotes the horizontal unit vector, ajmﬂenotes the vertical unit vector.
For the purposes of describing the motion, these unit vectorsaargtantsinde-
pendent of. The time dependence of the position vectdt) is contained in the
coordinatesg(t) andy(t).

The derivative ofk(t) is

B dey dg
dt dt dt
= el (voy — gt)j
= v+t ij =v. (3-8)

As requireddx/dt is v. The derivative ol (¢) is

dv. _ dveg  duys
a - dt T ad
= 0+ (-9)j=—dj (3-9)

Thg acceleration vector has magnitudand direction—}, i.e., downward; sa =
—gj. We see thatlv/dt = a, as required.

3.1 Summary

To describe projectile motion (or 3D motion in general) we must use vectors.
However, for the ideal projectile (without air resistance) the two components—
horizontal and vertical—are independent. The horizontal component of the motion

SNewton’s second law iF' = ma.
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has constant velocity,., leading to Egs. (3-3) and (3-4). The vertical component
of the motion has constant acceleratign= —g, leading to Egs. (3-5) and (3-6).

To depict the motion, we could plat(t) andy(t) versust separately, or make
a parametric plot of versusz with ¢ as independent paramefehe parametric
plot yields aparabola Galileo was the first person to understand the trajectory of
an ideal projectile (with negligible air resistance): The trajectory is a parabola.

SExercise 5.3.1.



Mechanics 15

4 CIRCULAR MOTION

Consider an object M moving on a circle of radiis as illustrated in Fig. 5. We
could describe the motion by Cartesian coordinatés,andy(¢), but it is simpler

to use the angular positiai(t) because the radiuB is constant. The anglis
defined in Fig. 5. Itis the angle between the radial vector and tinds. The value

of 4 is sufficient to locate M. From Fig. 5 we see that the Cartesian coordinates are

xz(t) = Rcosf(t), (4-1)
y(t) = Rsinf(t). (4-2)

If 6(t) is known, thenz(¢) andy(t) can be calculated from these equations.

Figure 5:Circular motion. A
mass M moves on a circle of
radius R. The angled(t) is
used to specify the position. In
radians,l) = s/R wheres is
the arclength, as shown. The
velocity vectorv(t) is tangent
to the circle. The inset shows
the unit vector® andz, which
point in the direction of in-
creasing andr, respectively.

In calculus we always use thiadian measurdor an angled. The radian mea-
sure is defined as follows. Consider a circular arc with arclength a circle of
radiusR. The angle subtended by the arc, in radians, is

0= % (radian measure) (4-3)

4.1 Angular velocity and the velocity vector

The angular velocity(t) is defined by

w(t) (angular velocity) (4-4)

This function is thenstantaneousngular velocity at time. For example, if M
moves with constant speed, traveling around the circle in fiinghen the angular
velocity is constant and given by

w="T (constant angular velocity) (4-5)
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To derive (4-5) consider the motion during a time inter2al The arclengthAs
traveled along the circle durindyt is RA6 whereAd is the change of during At,
in radians. The angular velocity is then

" A0 As/R
At At
Because the speed is constahé,/ At is constant and independent of the time in-
terval At. Let At be one period of revolutiol?. The arclength for a full revolution

is the circumferencer R. Thus

2rR/R 2w

w = = —.

T T

The instantaneouspeedof the object is the rate of increase of distance with
time,

(4-6)

(4-7)

) = 1 g .. RA¢
v o A}trgo At A%Iilo At
do
= — = t). 4-8
Rdt Ruw(t) (4-8)

But what is the instantaneouwsglocity? Velocity is a vectowr, with both direction
and magnitude. The magnitudewfs the speedy; = Rw. The direction is tangent
to the circle, which is the same as the unit ve@o(See Fig. 5.) Thus the velocity
vector is

v = Rw@, (4-9)

which points in the direction of and has magnitudBw. In generaly, w, 8 and
0 are all functions of time as the particle moves around the circle. But of course
for circular motion,R is constant. We summarize our analysis as a theorem:

Theorem 1. The velocity vector in circular motion is

o~

v(t) = Ruw(t) O(t). (4-10)

4.2 Acceleration in circular motion

Now, what is theaccelerationof M as it moves on the circle? The acceleration

a is a vector, so we must determine both its magnitude and direction. Unlike the
velocity v, which must be tangent to the circle, the acceleration has both tangential
and radial components.

Recall that we have defined acceleration as the derivative of velocity in the case
of one-dimensional motion. The same definition applies to the vector quantities for
two- or three-dimensional motion. Using the definition of the derivative,

a(t) = lim v(t+At) —v(t) dv

= . 4-11
At—0 At dt ( )
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The next theorem relatesfor circular motion to the parameters of the motion.

Theorem 2. The acceleration vector in circular motion is
dw ~

_p~pn_ 2= -
a=R—0-RuT. (4-12)

Proof: We must calculate the derivative of using (4-10) forv. At time ¢, the
acceleration is

dv d

— _ = — 5
a(t) il (Rw )
dw ~ de
- R %o+uT). 4-1
R(dt0+wdt> (4-13)

Note that (4-13) follows from the Leibniz rule for the derivative of the product
w(t)O(t). Now,

o . A

a T A A (4-14)

Figure 6 demonstrates thAt) ~ —1Ad for smallAd. (The relation of differen-
tials isd@ = —1 df.) The direction ofA@ is radially inward. This little result has
interesting consequences, as we’'ll see! The derivative is then

o _ . TAP

dr A TAr T Ta T (4-15)
Substituting this result into (4-13) we find
dw ~
a(t) =R di; 6 — RW’T, (4-16)

which proves the theorem.

Figure 6: Proof thatdf =
—rdf. P, and B are points
on the circle with angle dif-
ferenceAd. The inset shows
that AB (= 65 — 6,) is cen-
tripetal (i.e., in the direction of
—7) and has magnitudAé in
the limit of smallA6.

AO




Mechanics 18

For circular motion, the radial component of the acceleration vectoy is
—Rw?. This component oh is called thecentripetal acceleration The word
“centripetal” meanslirected toward the centee may writea, in another form.
By Theorem 1w = v/R; therefore

ar=—7 (4-17)
If the speed of the object is constant, thén/dt = 0 and the acceleratioa is
purely centripetal. lruniform circular motion the acceleration vector is always
directed toward the center of the circle with magnitwdgR.

Imagine a ball attached to a string of length moving around a circle at con-
stant speed with the end of the string fixed. The trajectory must be a circle because
the string length (the distance from the fixed point) is constéiné ball constantly
accelerates toward the center of the circte. (= —v2/R) but it never gets any
closer to the centern(t) = R, constant)!This example illustrates the fact that the
velocity and acceleration vectors may point in different directions. In uniform cir-
cular motion, the velocity is tangent to the circle but the acceleration is centripetal,
i.e., orthogonal to the velocity.

Example 4-6. Suppose a race car travels on a circular track of raftius 50 m.
(This is quite small!) At what speed is the centripetal acceleration equaj?0

Solution. Using the formulaz = v?/R, and setting: = g, the speed is

v=1/gR=1/98m/s? x 50m = 22.1m/s. (4-18)

Converting to miles per hour, the speed is abtsumni/hr. A pendulum suspended
from the ceiling of the car would hang at an angle of 45 degrees to the vertical (in
equilibrium), because the horizontal and vertical components of force exerted by
the string on the bob would be equal, both equahip The pendulum would hang
outwardfrom the center of the circle, as shown in Fig. 7. Then the string exerts
a force on the bob with amward horizontal component, which is the centripetal
force on the bob.

The equatioru, = —v?/r for the centripetal acceleration in circular motion
was first published by Christiaan Huygens in 1673 in a book entiflelogium
Oscillatorium Huygens, a contemporary of Isaac Newton, was one of the great
figures of the Scientific Revolution. He invented the earliest practical pendulum
clocks (the main subject of the book mentioned). He constructed excellent tele-
scopes, and discovered that the planet Saturn is encircled by rings. In his scientific
work, Huygens was guided by great skill in mathematical analysis. Like Galileo
and Newton, Huygens used mathematics to describe nature accurately.



Mechanics

Figure 7: A race car on a cir-
cular track has centripetal ac-
celerationv?/R. If v2/R =

g, then the equilibrium of a
pendulum suspended from the
ceiling is at 45 degrees to the
vertical. In the frame of refer-
ence of the track, the bob ac-
celerates centripetally because
it is pulled toward the cen-
ter by the pendulum string.
In the frame of reference of
the car there is a centrifugal
force—an apparent (but fic-
titious) force directed away
from the center of the track.

19

O

Ol o=
toward the center
of the circle
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5 KEPLER’S LAWS OF PLANETARY MOTION

Kepler's first law is that the planets travel on ellipses with the sun at one focal
point. Newton deduced from this empirical observation that the gravitational force
on the planet must be proportionallgr? wherer is the distance from the sun.

Figure 8 shows a possible planetary orbit. The ellipse is characterized by two
parameterse = semimajor axis and = eccentricity.

Figure 8: A possible planetary
orbit. The sun S is at the ori-
gin, which is one focal point
of the ellipse, and the planet
P moves on the ellipse. The
large diameter i2a, wherea

is called the semimajor axis. S
The distance between the foci
is 2ae wheree is called the ec-
centricity. The perihelion dis-
tance isr— = a(1 — e) and
the aphelion distance is; = 2a
a(l+e). Acircle is an ellipse
with e = 0.

206 ——

ry r.
aphelion perihelion

5.1 Kepler’s third law

Kepler’s third law relates the peridl and the semimajor axis of the ellipse. To

the accuracy of the data available in his time, Kepler foundiR&s proportional

to a3. The next example derives this result from Newtonian mechanics, for the
special case of a circular orbit. A circle is an ellipse with eccentricity equal to
zero; then the semimajor axis is the radius.

Example 5-7. Show thatT? o r? for a planet that revolves around the sun on a
circular orbit of radius-.”

Solution. In analyzing the problem, we will neglect the motion of the sun. More
precisely, both the sun and the planet revolve around their center of mass. But
because the sun is much more massive than the planet, the center of mass is ap-
proximately at the position of the sun, so that the sun may be considered to be at
rest. Neglecting the motion of the sun is a good approximation. A more accurate

"We consider an ideal case in which thidaer planets have a negligible effect on the planet being
considered. This is a good approximation for the solar system, but not exact.
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calculation is in exercise 21.
Let m denote the mass of the planet, aWdthe mass of the sun.

For a circular orbit the angular speed of the planet is constantdt = 0.
Therefore the accelerationas= —rw?t; or, in terms of the speed= rw,

a= -7 (5-1)
T
The direction is-1, i.e., centripetal, toward the sun. The gravitational force exerted
by the sun on the planet is

_GMm,\

F= r, (5-2)

2
r
which is also centripetal. Equation (5-2) is Newton’s theory of Universal Gravita-
tion, in which the force is proportional t/r2.
Newton’s second law of motion states th&t= ma. Therefore,

muv? GMm

r r2

: (5-3)

The speed of the planet is

v= (GM)”2 . (5-4)

r

The distance traveled in tin¥(one period of revolution) i8xr (the circumference
of the orbit), so the speed is = 277 /7. Substituting this expression ferinto
(5-4) gives

2rr\?  GM
—_— = —. 5-5
( T ) T (5-5)
Or, rearranging the equation,
A2y
2 _ . 5-6
GM "’ (5-6)

we see thaf™ is proportional ta-3, as claimed.

In obtaining (5-6) we neglected the small motion of the sun around the center-
of-mass point. This is a very good approximation for the solar system. In this
approximation™ /r3 is constant, i.eJ? /r3 has the same value for all nine plan-
ets.

We have only considered a special case—a circular orbit. In general, a planetary
orbit is anellipse The calculation of elliptical orbits is more complicated, but the
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final result for the period is simple

9 472q3 N 472a3
G(M+m)  GM

whereaq is the semimajor axis.

5.2 Kepler’s second law

22

(6-7)

Kepler's second law states that the radial vector sweeps out equal areas in equal
times. This law is illustrated in Fig. 9. In Newtonian mechanics it is a consequence
of conservation of angular momentum. The next two examples show how Kepler's
second law follows from Newton’s theory.

Figure 9: Kepler's second
law. The radial vector sweeps
out equal areas in equal times.
(&) The radial vector sweeps
out the shaded region as the
planet moves from P to
P,. (b) The planet moves
faster near perihelion (PH) and
slower near aphelion (AH).

Example 5-8. Conservation of angular momentum

AH

P2

AO

PH

The angular momenturh of an object of mass: that moves in they plane is

defined by

L =m (zvy — yvg) .

Show thatZ is constant if the force on the object is central.

(5-8)
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Solution. To show that a function is constant, we must show that its derivative is
0.8 In (5-8), the coordinates andy, and velocity components, andv,, are all
functions of timet. But the particular combination ih is constant, as we now
show. The derivative of. is

arL. dx n dv, dy dvg
a — lar e @t Va
= Mmugvy + o Fy, — muyu, — yFy
= xF, —yF,. (5-9)

In the first step we have used the fact that/dt = v, anddv/dt = a; also, by
Newton’s second law, the acceleratians equal toF /m. The final line (5-9) is
called the torque on the object.

For any central force the torque(s The term “central force” means that the
force isin the direction o1, i.e., along the line to the origin. (The sign—attractive
or repulsive— is unimportant for the proof of conservation of angular momentum.)
Figure 10 shows a central for&toward the origin. The components Bfare

F,=—Fcosf) and F,=—Fsin0 (5-10)

whereF' is the strength of the force and the minus signs meanRhattoward0.
Thus the torque on the object is

torque = xF, —yF,
= —rcosf Fsinf+ rsinf Fcosf = 0. (5-11)

Since the torque i8, equation (5-9) implies thatL/dt = 0. Since the derivative
is 0, the angular momenturh is constant, as claimed.

y

—

Figure 10: An attractive cen-
tral force.  The Cartesian
coordinates at P arer = P
rcosf andy = rsinf. The
force components aré, = F
—Fcosf andF, = —F'sin6 r
where F' is the magnitude of
the force vector. The torque, 0

xFy — yF,,is0. | %

8The derivative of any constant(s
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Example 5-9. Kepler's law of equal areas

Show that the radial vector from the sun to a planet sweeps out equal areas in
equal times.

Solution. Figure 9(a) shows the elliptical orbit. The shaded ated is the area
swept out by the radial vector between timesmdt + At. The shaded area may be
approximated by a triangle, with baseind height-Af, whereA# is the change
of the angular position betweerandt + At. Approximating the area as a triangle
is a good approximation for smafi¢z. Now consider the limitAt — 0; i.e., At
andA A become the differentialé anddA. The area of the triangle becomes

1 1
dA = 5 x base x height = 5 X r X rdd = %r2d9. (5-12)

Thus, in the limitAt¢ — 0, where we replacét by dt,

dA 1 ,d0

We'll use this result presently.

But now we must express the angular momentum in polar coordinates. The
position vector of M isx = rr, and itsx andy components are

x =rcosf and y=rsinf. (5-14)
The velocity vector is

dx  dr . dr  dr__ do ~
vV = E = ar + 7"% = %I‘ =+ 7"%07 (5'15)

note thatdt = 6 d6.° So, thex andy components of velocity are

dr e .

e = cos — r— sin 0, (5-16)
dr . de

Uy = E Sln9 + 'I”E COS 9 (5'17)

Now, L is defined in (5-8); substituting the polar expressionsifoy, v, andv,
we find

L = m(zvy — yvy)
= m {T‘Z cosfsinf + 7“2% cos? 9]
d do
-m [rr sin @ cosf — r? = sin® 0}
dt dt
o df

do
_ 2% 2 s 2 _ - _
= mr ; (COS 0 + sin 0) =mr ‘ . (5 18)

%Exercise 5.3.1.
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The resultis
L =mrw. (5-19)

Comparing this result to (5-13) we see thiat/dt is equal toL/2m. But L is

a constant of the motion by conservation of angular momentum. dHys¢ is
constant. In wordgshe rate of change of the area is constar#., independent of
position on the orbit. Hence Kepler's second law is explained: The area increases
at a constant rate, so equal areas are swept out in equal times.

5.3 The inverse square law

Kepler's first law is that the planets travel on ellipses with the sun at one focal
point. We will prove that this observation implies that the force on the planet must
be an inverse square law, i.e., proportionall f@? wherer is the distance from
the sun. The calculations depend on all that we have learned about derivatives and
differentiation.

The equation for an elliptical orbit in polar coordinates?) is

1— 2
r() = 2L=€)

1+ ecosb

wherea = semimajor axis and = eccentricity. Figure 8 shows a graph of the

ellipse. What force is implied by the orbit equation (5-20)? The radial acceleration
iSlO

(5-20)

d?r do\?
Ay = W - T <dt> . (5‘21)

The first term involves the change of radius; the second term is the centripetal
acceleration-rw?. Now, a, must equalF,. /m by Newton’s second law. To de-
termine the radial forcé’. we must express, as a function of-. We know that
angular momentum is constant; by (5-19),

pdf de L

T S0 T 2 ( )

Now starting from (5-20), and applying the chain riite,

dr dr df —a(l —e?) ) do

dt dodt (1+ ecosh)? (_esme)&

_a(l—e?esing L(1+ecosf)?  Lesinf (5-23)
(14+ecosh)?2 ma2(1—e2)2  ma(l—e2)’

Ysee Exercise 21.
"The calculations of (5-23) and (5-24) require these results from calculus: the derivative (with
respect t@) of cos 6 is — sin #, and the derivative ofin € is cos 6.
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and, taking another derivative,

d2r Lecosf d9_ Lecosf L

dt2 " ma(l—e2) dt  ma(l —e2) mr?’ (5-24)

Combining these results in (5-21), the radial component of the acceleration is

0 - L%ecosf —r( L )2
" m2a(l - e2)r? mr?
_ L? { ecos b B 1+ecos€}: —L? ' (5-25)
m?r? La(l —e2) a(l—e?) m2a(l — e?)r?
By Newton’s second law, then, the radial force must be
k L?
F, =ma, = —2 where k= ma(l—c3)’ (5-26)

Our resultis that the force on the planet must be an attactive inverse-square-law,
F, = —k/r%. The orbit parameters are related to the force paranetgr

L? = ma(1 — k. (5-27)

5.3.1 Newton’s Theory of Universal Gravitation

From the fact that planetary orbits are elliptical, Newton deducedthat —k /2.

Also, k£ must be proportional to the planet’s masdecausd™? « a3, independent

of the mass (cf. Section 9.5.1). But themmust also be proportional to the solar
mass, because for every action there is an equal but opposite reaction. Therefore
the force vector must be

GMm.. (5-28)

F=Fr=-

T 7/12
whereG is a universal constant. Newton’s theory of universal gravitation states
that any two masses in the universeand M, attract each other according to the
force (5-28).

Newton’s gravitational constart cannot be determined by astronomical ob-
servations, because the solar magsis not known independentlyG must be
measured in the laboratory. An accurate measuremefitisfvery difficult, and
was not accomplished in the time of Newton. The first measuremefitveds by
Henry Cavendish in 1798&7 is hard to measure because gravity is extremely weak,

G=6.67x10""m?s?kg™ L. (5-29)

Newton’s theory of gravity is very accurate, but not exact. A more accurate
theory of gravity—the theory of general relativity—was developed by Einstein. In
relativity, planetary orbits are not perfect ellipses; the orprecessvery slowly.

Indeed this precession is observed in precise measurements of planetary positions,
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and the measurements agree with the relativistic calculation.

* * *

The examples in this introduction to classical mechanics show how calculus
is used to understand profound physical observations such as the motion of the
planets. Calculus is essential in the study of motion.
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EXERCISES

Section 2: Position, velocity, and acceleration

1. Show thatt = v andZ = « for the functions in Table 1.

2. Consider a car driving on a straight road at 60 mph (mi/hr). (a) How far does it
travel in 1 second? (b) What is the speed in ft/s?

3. Race car. Arace car accelerates on a drag strip from 0 to 60 mph in 6 seconds.
(a) What is the acceleratiat? Express: in ft/sec.
(b) How far does the car travel in that 6 seconds? Express the answer in feet.

4. The graph in Fig. 11 shows the acceleratign) of an object, as a function of
time¢. At ¢ = 0 the velocity is0. Make plots of velocityv(t) and positionz(t).
Put accurate scales on the axes. What is the final position?

a [m/s?]
21

1

Figure 11: Exercise 4. 0 — t[s]

-14

24

5. Consider the motion shown in the graph of positioms a function of time
t, shown in Fig. 12. Sketch graphs of the veloaity) and acceleration(t). In
words, state what is happening between 2 and3 s; betweent = 7 and7.75s.

x [m]

5

4 1

3
Figure 12: Exercise 5. 2

1

6. Suppose a mass = 3 kg moves along the axis according to the formula

z(t) = Ct3(20 — t)?
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for 0 < ¢t < 20. (The timet is measured in seconds.) The initial acceleration (at
t =0)is4m/s.

(a) DetermineC.

(b) Determine the velocity &= 5, 10, 15, and20 s.

(c) Find the force on the object, in newtonsfat 10s.

(d) Describe the motion in words.

7. Consider an object moving in one dimension as illustrated in Fig. 13.

(a) The acceleration betweeén= 0 and3 s is constant. What is the acceleration?
(b) The acceleration between= 3 and4 s is constant. What is the acceleration?
(c) In words, what is happening for> 4 s?

x [m]

Figure 13: Exercise 7.

t [s]

N

8. Conservation of energy is a unifying principle in science. For the dynamics of a
particle moving in one dimension, the energy is

E= %mvz +U(x)

wherev = dz/dt andU(x) = potential energy. Show thdl is constant, i.e.,
dE/dt = 0. (Hints: The force and potential energy are related ) =
—dU/dx. Use the chain rule to calculat//dt, and remember Newton’s second
law.)

9. ForceF (z) and potential energ¥/ (), as functions of position, are related by

F(xz) = —dU/dz. An object M is attached to one end of a spring, and the other
end of the spring is attached to an immovable wall. The potential energy of the
spring is%k::):2 wherez = displacement of M from equilibrium(can be positive

or negative.) Show that the force on M doubles as the displacement doubles. Show
that the force is opposite in sign to the displacement. What does this imply about
the direction of the force?

10. A stone is dropped from a tower of height Lety(t) be the height above the
ground ¢, = 0 at ground level) as a function of tinte The gravitational potential
energy isU(y) = mgy. Using the equations for constant acceleratign= —g,



Mechanics 30

write a formula for total energy’ as a function of time. Is E' constant? What is
the value ofE'?

Section 3: Projectiles

11. Consider projectile motion, neglecting air resistance. Sketch a graph of the
horizontal coordinate:(¢) as a function of time. Sketch a graph of the vertical
coordinatey(t) as a function of time. Sketch a parametric plot of the vertical co-
ordinatey versus the horizontal coordinatewith ¢ as the independent parameter.
(Try using the parametric plot mode of a graphing calculator.) What curve is the
graph ofy versusc?

12. A ball is thrown horizontally at 50 mi/hr from a height of 5 ft. Where will it hit
the ground?

13. Calculate the initial speed of a football in a kickoff. Assume that the initial
direction is 45 degrees above the horizontal, and that the ball hits the ground 60
meters downfield.

14. A boy stands at the peak of a hill, which slopes down away from him at &ngle
with repect to the horizontal. He throws a rock with spegdt angled with repect

to the horiztonal. Find the value éfsuch that the rock will travel the maximum
distance down the hill before hitting the ground.

Section 4: Circular motion

15. Consider a go-cart moving on a circular track of raditis= 40 m. Suppose
it starts from rest and speeds upttokm/hr in 20 seconds (with constant acceler-
ation). What is the acceleration vectortat 10s? Give both the direction (angle
from the tangent) and the magnitude.

16. Imagine a ball attached to a string of lengthmoving along a circle at constant
speed with the end of the string fixed. The ball constantly accelerates toward the
center of the circle but it never gets any closer to the center. According to Newton’s
second law therenust bea force in the direction of the acceleration. What is this
force? (What is exerting the force, and what kind of force is it?) Is the force
centripetal? If so, why?

17. A race car travels at constant speed around a circular trackR ketadius of

the track and> = speed of the car. A small mass is suspended from the ceiling of
the car as a pendulum. (a) Determine the angle of equilibdiwithe pendulum.

(b) For what speed is the angle= 60 degrees?

Section 5: Motion of the planets

18. The Earth’s orbit around the Sun is nearly circular, with radids= 1.496 x
10" m and periodl’ = 1y. From this, and théaboratory measurement of New-
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ton’s gravitational constant; = 6.67 x 10~ "'m3s~2kg~!, calculate the mass of
the sun.

19. Use a graphing calculator or computer program to plot the curve defined by Eq.
(5-20). (Pick representative values of the parametemsde.) This is an example

of apolar plot, in which the curve in a plane is defined by giving the radial distance
r as a function of the angular positién Be sure to set the aspect ratio (= ratio of
length scales on the horizontal and vertical axes) equal to

20. Consider a particle M that moves on thg plane. The polar coordinates, ¢)
and unit vectorst, ) are defined in Fig. 14.

(a) Show thatr = r cos# andy = rsin 6.
(b) Show that for a small displacement of M,

At ~0A0 and A=~ -TAF.

(Hint: See Fig. 6 but generalize it to include a radial displacement.)

(c) The position vector of M i = r¥, which has magnitude and directiorr. In
general, bothr andr vary with timet, as the object moves. Show that the velocity
vector is

v = dr T+ r@ 6
S dt dt
vy A
6 A
.
r M
Figure 14: Exercise 20. \e
-“ x

21. Derive Eg. (5-21) for the radial componemt of the acceleration in polar
coordinates. [Hint: Use the results of the previous exercise.]

22. Prove that the relation of parameters in (5-27) is true for a circular orbit. (For
a circle, the eccentricity is 0.)

23. Look up the orbital data—peridfl and semimajor axis—for the planets. Use
the year (y) as the unit of time f@r, and the astronomical unit (AU) as the unit of
distance fow. Calculatel™ /a? for all nine planets. What do you notice about the
values ofT? /a®? Explain.

24. The angular momentum vectlrfor motion of a particle in three dimensions
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is defined byL. = x x p. Prove that/L/dt is equal to the torque on the particle
around the origin,.

25. Reduced massSuppose two massesy; andms, exert equal but opposite
forces on each other. Define the center of mass podRiamd relative vector by

mi1Xi1 + MmoXo
R T ——

and r =X — Xo.
m1 + mg

(Note thatr is the vector fromms to my.)

(@) Show thati’?R/dt?> = 0, i.e., the center of mass point moves with constant
velocity. (It could be at rest.)

(b) Show that

d2r

Pz = F(r)

where . is thereduced massmimso/(my + mz). Thus the two-body problem

reduces to an equivalent one-body problem with the reduced mass.

(c) Show that Kepler’s third law for the case of a circular orbit should properly be
42p3

G(M +m)

rather than (5-6). Why is (5-6) approximately correct?

T =

26. Consider ainary star Assume the two stars move on circular orbits. Given
the massed/; and M5, and the distance between the stars, determine the period
of revolutionT".
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General Exercises

27. Platform diving. A diver jumps off a 10m platform. How many seconds
does she have to do all her twists and flips before she enters the water? (Assume
her initial upward velocity i%).)

28. Conservation of energy. A rock falls from a cliff 200 m high, and air
resistance can be neglected.

(a) Ploty (= height) versus (= time).
(b) Plotv (= speed) versus
(c) Plotv?/2 + gy versust. Describe the result in words.

29. Braking. (a) You are driving on the highway &0 mph (= 88 ft/s). There is
an accident ahead, so you brake hard, decelerating at= 9.6 ft/s?.

(a) How much time does it take to stop?
(b) How far will you travel before stopping?

(c) How far would you travel if your initial speed weté mph, assuming the same
deceleration?

30. A ball rolling down an inclined plane has constant acceleratidnis released
from rest. U is a unit of length.

During the first second the ball travels a distancé Ofon the inclined plane.
(a) How far does it travel during the second second?

(b) How far does it travel during the third second?

(c) How far does it travel during the tenth second?

(d) How far did it travel altogether after 10 seconds?

(e) What isa? (Express the answer in U/

(f) Galileo made careful measurements of a ball rolling down an inclined plane, and
discovered that the distande is given by the equatio® = %atQ. He observed
thatthe distances for fixed time intervals are in proportion to the sequence of odd
integers. Do your anwers agree?

31. A castle is 150 m distant from a catapult. The catapult projects a stone at 45
degrees above the horizontal. What initial spegt required to hit the castle?

(Hint: The initial velocity vector isvy = ivg cos45 + jug sin 45; that is, vp, =
’on = ’()0/\/5.)

32. Baseball home run.A slugger hits a ball. The speed of the ball as it leaves
the bat isvg = 100 mi/hr = 147ft/s. Suppose the initial direction & degrees
above the horizontal, and the initial height3if. The acceleration due to gravity
is 32 ft/s?.

(a) Ploty as a function of, e.g., using Mathematica or a graphing calculator.



Mechanics 34

(b) Whenpreciselydoes the ball hit the ground?
(c) Wherepreciselydoes the ball hit the ground?

(d) We have neglected air resistance. Is that a good approximation? Justify your
answer.

33. Conservation of energy for a projectile
(a) Consider a projectile, moving under gravity but with negligible air resistance,
such as a shot put. Assume these initial values
xo=0 and yp=1.6m,
voz = 10m/s and wvp, = 8m/s.
Use Mathematica or a graphing calculator to make plots\wrsust andy versus
t. Show scales on the axes.

(b) Now plot the total energy (kinetic plus potential) versus

B(t) = § [02(t) + v3(t) | + mgy(t)
for m = 7kg.
(c) Prove mathematically thdt is a constant of the motion.
34. The jumping squirrel. A squirrel wants to jump from a point A on a branch
of a tree to a point B on another branch. The horizontal distance from A to B is

x = 5ft, and the vertical distance ig = 4ft. If the squirrel jumps with an initial
speed of 20 ft/s, at what angle to the horizontal should it jump?

35. Flight to Mars. To send a satellite from Earth to Mars, a rocket must accelerate
the satellite until it is in the correct elliptical orbit around the sun. The satellite does
not travel to Mars under rocket power, because that would require more fuel than
it could carry. It just moves on a Keplerian orbit under the influence of the sun’s
gravity.

The satellite orbit must have perihelion distance = Rg (= radius of Earth’s
orbit) and aphelion distanee. = R;; (= radius of Mars’s orbit) as shown in the
figure. The planetary orbit radii are

Rp=1496 x 10" m  and Ry =2.280 x 10! m. (5-30)

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the result in months and
days, counting one month as 30 days.

36. Parametric plots in Mathematica

A parametric plot is a kind of graph—a curve gfversusx wherex andy are
known as functions of an independent variabtalledthe parameterTo plot the
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Figure 15: Exercise 35.

curve specified by

= f(t) and y = g(t),
the Mathematica command is
ParametricPlot[{f[t],g[t]},{t,t1,t2},

PlotRange->{{x1,x2},{y1,y2}},
AspectRatio->r]

Here{t1,t2 } is the domain of, and{x1,x2 } and{yl,y2 } are the ranges of
x andy. To give thex andy axes equal scales,should have the numerical value
of (y2-y1)/(x2-x1)

Use Mathematica to make the parametric plots below. In each case name the curve
that results.

(@z(t) =t, y(t) =t — 2.

Da(t)=t,  y(t)=1/t.

(c) z(t) = cos(2nt), y(t) = sin(27t).

(d) z(t) = 2 cos(27t), y(t) = 0.5sin(27t).
() z(t) = cos(27t/3), y(t) = sin(27t /7).
37. Parametric equations for a planetary orbit

The sun is at the origin and the plane of the orbit has coordinasesly. We can
write parametric equations for the timeand coordinates andy, in terms of an
independent variablg:

T
t = %(@Z)—ssind))
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x = a(cosyh—e)

y = av1l—e2siny
The fixed parameters afié = period of revolutiong = semimajor axis, and =
eccentricity.

(a) The orbit parameters of Halley’s comet are
a=179AU and ¢ = 0.97.

Use Mathematica to make a parametric plot of the orbit of Halley’s comet. (You
only need the parametric equations foandy, letting the variable) go from O to
27 for one revolution.)

(b) Calculate the perihelion distance. Express the result in AU.

(c) Calculate the aphelion distance. Express the result in AU. How does this com-
pare to the radius of the orbit of Saturn, or Neptune?

(d) Calculate the period of revolution. Express the result in years.
38. Parametric surfaces

A parametriccurveis a curve on a plane. The curve is specified by giving coordi-
natesr andy as functions of an independent parameter

A parametricsurfaceis a surface in 3 dimensions. The surface is specified by
giving coordinateg, y, andz as functions of 2 independent parametersndv.
That is, the parametric equations for a surface have the form

x = f(u,v), y = g(u,v), z = h(u,v).
As u andv vary over their domains, the points, y, z) cover the surface.
The Mathematica command for plotting a parametric surfaBaiametricPlot3D
To make a graph of the surface, execute the command

ParametricPlot3D[{f[u,v],g[u,V],h[u,V]},
{u,ul,u2},{v,v1i,v2}]

In this command(u;, u2) is the domain ol and(vy, v2) is the domain ob. Be-
fore giving the command you must define in Mathematica the funcffan4,
glu,v], h[u,v] . For example, for exercise (a) below you would define

flu_,v_]:=Sin[u]Cos|v]
Make plots of the following parametric surfaces. In each case name the surface.
(@) For0 < u < wand0 < v < 2,

flu,v) = sinucoswv
g(u,v) = sinusinv

h(u,v) = cosu
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(b) For0 < u <27 and—0.3 < v < 0.3,

f(u,v) = cosu+vcos(u/2)cosu
g(u,v) = sinu+vcos(u/2)sinu
h(u,v) = wsin(u/2)

(c) ForO0 < u <27 and0 <wv < 27,

flu,v) = 0.2(1 —v/(27)) cos(2v)(1 + cosu) + 0.1 cos(2v)
g(u,v) = 0.2(1 —v/(27))sin(2v)(1 + cosu) + 0.1sin(2v)
h(u,v) = 0.2(1 —v/(27))sinu+ v/(27)
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