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Introduction to Classical Mechanics

1 HISTORY

Isaac Newton solved the premier scientific problem of his day, which was to explain
the motion of the planets. He published his theory in the famous book known
asPrincipia. The full Latin title of the book1 may be translated into English as
Mathematical Principles of Natural Philosophy.

The theory that the planets (including Earth) revolve around the sun was pub-
lished by Nicolaus Copernicus in 1543. This was a revolutionary idea! The picture
of the Universe that had been developed by astronomers before Copernicus had the
Earth at rest at the center, and the sun, moon, planets and stars revolving around
the Earth. But this picture failed to explain accurately the observed planetary posi-
tions. The failure of the Earth-centered theory led Copernicus to consider the sun
as the center of planetary orbits. Later observations verified the Copernican theory.
The important advances in astronomical observations were made by Galileo and
Kepler.

Galileo Galilei was perhaps the most remarkable individual in the history of
science. His experiments and ideas changed both physics and astronomy. In
physics he showed that the ancient theories of Aristotle, which were still accepted
in Galileo’s time, are incorrect. In astronomy he verified the Copernican model of
the Universe by making the first astronomical observations with a telescope.
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1Philosophiae Naturalis Principia Mathematica
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Galileo did not invent the telescope but he made some of the earliest telescopes,
and his telescopes were the best in the world at that time. Therefore he discovered
many things about the the solar system and stars:

• craters and mountains on the moon

• the moons of Jupiter

• the phases of Venus

• the motion of sunspots

• the existence of many faint stars

These discoveries provided overwhelming evidence in favor of the Copernican
model of the solar system.

Johannes Kepler had extensive data on planetary positions, as functions of time,
from observations collected earlier by Tycho Brahe. He analyzed the data based on
the Copernican model, and deduced three empirical laws of planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focal point.

2. The radial vector sweeps out equal areas in equal times.

3. The square of the period of revolution is proportional to the cube of the
semimajor axis of the ellipse.

Newton started with the results of Galileo and Kepler. His goal, then, was to
explain why.Why do the planets revolve around the sun in the manner discovered
by Galileo and Kepler? In particular, what is the explanation for themathematical
regularities in Kepler’s laws of orbital motion? To answer this question, Newton
had to develop the laws of motion and the theory of universal gravitation. And, to
analyze the motion he invented a new branch of mathematics, which we now call
Calculus.

The solution to planetary motion was published inPrincipia in 1687. Newton
had solved the problem some years earlier, but kept it secret. He was visited in
1684 by the astronomer Edmund Halley. Halley asked what force would keep the
planets in elliptical orbits. Newton replied that the force must be an inverse-square
law, which he had proven by mathematical analysis; but he could not find the paper
on which he had written the calculations! After further correspondence, Halley
realized that Newton had made great advances in physics but had not published the
results. With Halley’s help, Newton publishedPrincipia in which he explained his
theories of motion, gravity, and the solar system.
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After the publication ofPrincipia, Newton was the most renowned scientist
in the world. His achievement was fully recognized during his lifetime. Today
scientists and engineers still use Newton’s theory of mechanics. In the 20th century
some limitations of Newtonian mechanics were discovered: Classical mechanics
breaks down for extreme speeds (approaching the speed of light) and at atomic
dimensions. The theory of relativity, and quantum mechanics, were developed
in the early 20th century to describe these cases. But for macroscopic systems
Newton’s theory is valid and extremely accurate.

This early history of science is quite relevant to the study of calculus. New-
ton used calculus for analyzing motion, although he published the calculations in
Principia using older methods of geometrical analysis. (He feared that the new
mathematics—calculus—would not be understood or accepted.) Ever since that
time, calculus has been necessary to the understanding of physics and its applica-
tions in science and engineering. So our study of mechanics will often require the
use of calculus.
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2 POSITION, VELOCITY, AND ACCELERATION

2.1 Position and velocity

Suppose an object M moves along a straight line.2 We describe its motion by
giving the positionx as a function of timet, as illustrated in Fig. 1. The variable
x is thecoordinate, i.e., the displacement from a fixed point0 called theorigin.
Physically, the line on which M moves might be pictured as a road, or a track.
Mathematically, the positions form a representation of the ideal real line. The
coordinatex is positive if M is to the right of0, or negative if to the left. The
absolute value|x| is the distance from0. The possible positions of M are in one-
to-one correspondence with the set of real numbers. Hencepositionis a continuous
functionx(t) of the independent variablet, time.

Figure 1: An example of po-
sition x as a function of time
t for an object moving in one
dimension. The object starts at
rest at the origin att = 0, be-
gins moving to positivex, has
positive acceleration for about
1 second, and then gradually
slows to a stop at a distance of
1 m from the origin.

Example 2-1. What is the position as a function of time if M is at rest at a point
5 m to the left of the origin?

Solution. Because M is not moving, the functionx(t) is just a constant,

x(t) = −5 m. (2-1)

Note that the position has both a number (−5) and a unit (m, for meter). In this
case the number is negative, indicating a position to the left of0. The number
alone is not enough information. The unit is required. The unit may be changed by
multiplying by a conversion factor. For example, the conversion from meters (m)
to inches (in) is

5 m = 5 m× 38 in
1 m

= 190 in. (2-2)

(There are 38 inches per meter.) So, the position could just as well be written as

x(t) = −190 in. (2-3)

2We’ll call the moving object M. The letter M could stand for “moving” or “mass.”
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Equations (2-3) and (2-1) are equivalent. This example shows why the number
alone is not enough: The number depends on the unit.

A Comment on Units of Measurement. In physical calculations it is important
to keep track of the units of measurment—treating them as algebraic quantities.
Dropping the unit will often lead to a failed calculation. Keeping the units has a
bonus. It is a method of error checking. If the final unit is not correct, then there
must be an error in the calculation; we can go back and figure out how to correct
the calculation.

Example 2-2. A car travels on a straight road, toward the East, at a constant speed
of 35 mph. Write the position as a function of time. Where is the car after 5
minutes?

Solution. The origin is not specified in the statement of the problem, so let’s say
thatx = 0 at timet = 0. Then the position as a function of time is

x(t) = +
(

35
mi
hr

)
t, (2-4)

where positivex is east of the origin. Equation (2-4) is based on the formula

distance = speed× time,

familiar from grade school; or, taking account of the signs,

displacement = velocity× time.

Any distance must be positive. ‘Displacement’ may be positive or negative. Simi-
larly, ‘speed’ must be positive, but ‘velocity’ may be positive or negative, negative
meaning that M is moving to smallerx.

After 5 minutes, the position is

x(5 min) = 35
mi
hr
× 5 min

= 35
mi
hr
× 5 min× 1 hr

60 min
= 2.917 mi. (2-5)

(We multiply by the conversion factor,1 hr/60 min, to reduce the units.) The
position could be expressed in feet, as

x(5 min) = 2.917 mi× 5280 ft
1 mi

= 15400 ft. (2-6)

So, after 5 minutes the car is 15400 feet east of its initial position.

? ? ?

It is convenient to record some general, i.e., abstract formulas. If M is at rest at
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x0, then the functionx(t) is

x(t) = x0. (object at rest) (2-7)

If M moves with constant velocityv0 then

x(t) = x0 + v0t. (object with constant velocity) (2-8)

Figure 2 illustrates graphs of these functions. The abscissa (horizontal axis) is the
independent variablet, and the ordinate (vertical axis) is the dependent variablex.
The slope in the second graph isv0. Note that the units ofv0 must be a length unit
divided by a time unit, because

v0 = slope =
rise
run

=
∆x
∆t

; (2-9)

for example, the units could be m/s. Now, recall from calculus that the slope in a
graph is equal to the derivative of the function! Thus,the derivative of the position
x(t) is the velocityv(t).

Figure 2: Motion of an object:
(a) zero velocity and (b) con-
stant positive velocity.

So far we have considered only constant velocity. If the velocity is not constant,
then theinstantaneous velocityat a timet is the slope of the curve ofx versust,
i.e., the slope of the tangent line. Again, this is precisely the derivative ofx(t).
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Lettingv(t) denote the velocity,

v(t) = lim
∆t→0

∆x
∆t

=
dx

dt
. (2-10)

Another notation for the time-derivative, often used in mechanics, isẋ(t) ≡ dx/dt.
Becausev(t) is defined by the limit∆t → 0, there is an instantaneous velocity at
everyt. We summarize the analysis by a definition:

Definition. The velocityv(t) is a function of timet, defined by
v(t) = dx/dt.

2.2 Acceleration

If the velocity is changing then the object M is accelerating. Theaccelerationis
defined as the time-derivative of the velocity,

a(t) = lim
∆t→0

∆v
∆t

=
dv

dt
. (definition of acceleration) (2-11)

By taking the limit∆t → 0, the acceleration is defined at every instant. Also,
becausev = dx/dt, the accelerationa is thesecond derivativeof x(t),

a(t) =
d2x

dt2
= ẍ(t). (2-12)

Example 2-3. A car accelerates away from a stop sign, starting at rest. Assume the
acceleration is a constant5 m/s2 for 3 seconds, and thereafter is0. (a) What is the
final velocity of the car? (b) How far does the car travel from the stop sign in 10
seconds?

Solution. (a) Let the origin be the stop sign. During the 3 seconds while the car is
accelerating, the acceleration is constant and so the velocity function must be

v(t) = at, (2-13)

because the derivative ofat (with respect tot) is a. Note thatv(0) = 0; i.e., the
car starts from rest. Att = 3 s, the velocity is the final velocity,

vf = v(3 s) = 5
m
s2
× 3 s = 15

m
s
. (2-14)

(b) The position as a function of time isx(t), and

dx

dt
= v(t). (2-15)

Equation (2-15) is called adifferential equationfor x(t). We know the deriva-
tive; what is the function? The general methods for solving differential equations
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general equations for constant acceleration

position x(t) = x0 + v0t+ 1
2at

2

velocity v(t) = dx/dt = v0t+ at

acceleration a(t) = dv/dt = a, constant

Table 1: Formulae for constant acceleration. (x0 = initial position, v0 = initial
velocity, anda = acceleration.)

involve integration. For this simple case the integral is elementary,

x(t) = x(0) +
∫ t

0
v(t)dt (2-16)

Please be sure that you understand why (2-16) is correct.

Before we try to do the calculation, let’s make sure we understand the problem.
The car moves with velocityv(t) = at (constant acceleration) for 3 seconds. How
far does the car move during that time? Thereafter it moves with constant velocity
vf = 15 m/s. How far does it move fromt = 3 s to t = 10 s? The combined
distance is the distance traveled in 10 s.

Well, we can calculate the postion by the integral in (2-16). The initial position
isx(0) = 0. The velocity functuion isat for t from 0 to 3 s; andv(t) is vf for t > 3
s. Thus, fort = 10 s,

x(t) =
∫ 3

0
atdt+

∫ 10

3
vfdt

= 1
2a(3 s)2 + vf(7 s)

= 127.5 m.

After 10 seconds the car has moved 127.5 meters.

Generalization. Some useful general formulae for constant acceleration are recorded
in Table 1. In the table,v0 is a constant equal to the velocity att = 0. Also,x0 is a
constant equal to the position att = 0. As an exercise, please verify thata = dv/dt
andv = dx/dt. Remember thatx0 andv0 are constants, so their derivatives are0.
The velocity and position as functions oft for constant acceleration are illustrated
in Fig. 3.

Example 2-4. A stone is dropped from a diving platform10 m high. When does it
hit the water? How fast is it moving then?

Solution. We’ll denote the height above the water surface byy(t). The initial
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Figure 3: Constant acceler-
ation. The two graphs are
(a) velocityv(t) and (b) posi-
tion x(t) as functions of time,
for an object with constant ac-
celerationa. Note that the
slope increases with time in
the lower graph.Why?

height isy0 = 10 m. The initial velocity isv0; because the stone is dropped, not
thrown, its initial velocityv0 is 0. The acceleration of an object in Earth’s gravity,
neglecting the effects of air resistance,3 is a = −g whereg = 9.8 m/s2. The
accelerationa is negative because the direction of acceleration is downward; i.e.,
the stone accelerates toward smallery. Using Table 1, the equation for positiony
as a function oft is

y(t) = y0 − 1
2gt

2. (2-17)

The variabley is the height above the water, so the surface is aty = 0. The timetf
when the stone hits the water is obtained by solvingy(tf) = 0,

y0 − 1
2gt

2
f = 0. (2-18)

The time is

tf =

√
2y0

g
=

√
2× 10 m
9.8 m/s2

= 1.43 s. (2-19)

Note how the final unit came out to be seconds, which is correct. The time to fall
to the water surface is1.43 seconds.

3Air resistance is a frictional force called “drag,” which depends on the size, shape, surface
roughness, and speed of the moving object. The effect on a stone falling 10 m is small.
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The equation for velocity is

v(t) =
dy

dt
= −gt. (2-20)

This is consistent with the second row in Table 1, becausev0 = 0 anda = −g.
The velocity when the stone hits the water is

vf = v(tf) = −9.8
m
s2
× 1.43 s = −14.0

m
s
. (2-21)

The velocity is negative because the stone is moving downward. The finalspeedis
the absolute value of the velocity,14.0 m/s.

2.3 Newton’s second law

Newton’s second law of motion states that the accelerationa of an object is pro-
portional to thenet forceF acting on the object,

a =
F
m
, (2-22)

or F = ma. The constant of proportionalitym is themassof the object. Equation
(2-22) may be taken as thedefinitionof the quantitym, the mass.

A Comment on Vectors. For two- or three-dimensional mo-
tion, the position, velocity, and accleration are all vectors—
mathematical quantities with both magnitude and direction. We
will denote vectors byboldfacesymbols, e.g.,x for position,v
for velocity, anda for acceleration. In hand-written equations,
vector quantities are usually indicated by drawing an arrow (→)
over the symbol.

Acceleration is a kinematic quantity—determined by the motion. Equation (2-
22) relates acceleration and force.But some other theory must determine the force.
There are only a few basic forces in nature: gravitational, electric and magnetic,
and nuclear. All observed forces (e.g., contact, friction, a spring, atomic forces,
etc.) are produced in some way by those basic forces. Whatever force is acting on
an object, (2-22) states how that force influences the motion of the object (accord-
ing to classical mechanics!).

The massm in (2-22) is called theinertial mass, because it would be determined
by measuring the acceleration produced by a given force. For example, if an object
is pulled by a spring force of50 N, and the resulting acceleration is measured to be
5 m/s2, then the mass is equal to10 kg.

The gravitational force is exactly (i.e., as precisely as we can measure it!) pro-
portional to the inertial mass. Therefore the acceleration due to gravity is indepen-
dent of the mass of the accelerating object. For example, at the surface of the Earth,
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all falling objects have the same acceleration due to gravity,g = 9.8 m/s2 (ignoring
the force of air resistance4). It took the great genius of Galileo to see that the small
differences between falling objects are not an effect of gravity but of air resistance.
Newton’s equationa = F/m explains why: Theforceof gravity is proportional to
the mass; therefore theaccelerationby gravity is independent of the mass.

The equationF = ma tells us how an object will respond to a specified force.
Because the accelerationa is a derivative,

a =
dv
dt

=
d2x
dt2

, (2-23)

Newton’s second law is adifferential equation. To use Newtonian mechanics, we
must solve differential equations.

4Take a sheet of paper and drop it. It falls slowly and irregularly, not moving straight down but
fluttering this way and that, because of aerodynamic forces. But wad the same piece of paper up into
a small ball and drop it. Then it falls with the same acceleration as a more massive stone.
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3 PROJECTILE MOTION

An ideal projectile is an object M moving in Earth’s gravity with no internal propul-
sion, and no external forces except gravity. (Areal projectile is also subject to
aerodynamic forces such as drag and lift. We will neglect these forces, a fairly
good approximation if M moves slowly.)

The motion of a projectile must be described withtwo coordinates: horizontal
(x) and vertical (y). Figure 4 shows the motion of the projectile in thexy coordinate
system. The curve is thetrajectoryof M.

Figure 4: Projectile motion.
Horizontal (x) and vertical (y)
axes are set up to analyze the
motion. The initial position is
(x, y) = (x0, y0). The initial
velocityv0 is shown as a vec-
tor at (x0, y0). The curve is
the trajectory of the projectile.
The inset shows the initial ve-
locity vectorv0 separated into
horizontal and vertical compo-
nents,v0xî and v0y ĵ; θ is the
angle of elevation ofv0. (̂i =
unit horizontal vector,̂j = unit
vertical vector)

Suppose M is released at(x, y) = (x0, y0) at timet = 0. Figure 4 also indicates
the initial velocity vectorv0 which is tangent to the trajectory at(x0, y0). Let θ be
the angle of elevation of the initial velocity; then thex andy components of the
initial velocity vector are

v0x = v0 cos θ, (3-1)

v0y = v0 sin θ. (3-2)

Horizontal component of motion. The equations for the horizontal motion are

x(t) = x0 + v0xt, (3-3)

vx(t) = v0x. (3-4)

These are the equations for constant velocity,vx = v0x. There is no horizontal
acceleration (neglecting air resistance) because the gravitational force is vertical.
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Vertical component of motion. The equations for the vertical motion are

y(t) = y0 + v0yt− 1
2gt

2, (3-5)

vy(t) = v0y − gt. (3-6)

These are the equations for constant acceleration,ay = −g. (As usual,g =
9.8 m/s2.) The vertical force isFy = −mg, negative indicating downward, where
m is the mass of the projectile. The acceleration isay = Fy/m by Newton’s sec-
ond law.5 Thusay = −g. The acceleration due to gravity does not depend on the
mass of the projectile because the force is proportional to the mass. Thus (3-5) and
(3-6) are independent of the mass.

Example 3-5. Verify that the derivative of the position vector is the velocity vector,
and the derivative of the velocity vector is the acceleration vector, for the projectile.

Solution. Position, velocity, and acceleration are allvectors. The position vector
is

x(t) = x(t)̂i + y(t)̂j. (3-7)

Here î denotes the horizontal unit vector, andĵ denotes the vertical unit vector.
For the purposes of describing the motion, these unit vectors areconstants, inde-
pendent oft. The time dependence of the position vectorx(t) is contained in the
coordinates,x(t) andy(t).

The derivative ofx(t) is

dx
dt

=
dx

dt
î +

dy

dt
ĵ

= v0xî + (v0y − gt) ĵ

= vxî + vy ĵ = v. (3-8)

As required,dx/dt is v. The derivative ofv(t) is

dv
dt

=
dvx

dt
î +

dvy

dt
ĵ

= 0 + (−g)̂j = −gĵ. (3-9)

The acceleration vector has magnitudeg and direction−ĵ, i.e., downward; soa =
−gĵ. We see thatdv/dt = a, as required.

3.1 Summary

To describe projectile motion (or 3D motion in general) we must use vectors.
However, for the ideal projectile (without air resistance) the two components—
horizontal and vertical—are independent. The horizontal component of the motion

5Newton’s second law isF = ma.
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has constant velocityv0x, leading to Eqs. (3-3) and (3-4). The vertical component
of the motion has constant accelerationay = −g, leading to Eqs. (3-5) and (3-6).

To depict the motion, we could plotx(t) andy(t) versust separately, or make
a parametric plot ofy versusx with t as independent parameter.6 The parametric
plot yields aparabola. Galileo was the first person to understand the trajectory of
an ideal projectile (with negligible air resistance): The trajectory is a parabola.

6Exercise 5.3.1.
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4 CIRCULAR MOTION

Consider an object M moving on a circle of radiusR, as illustrated in Fig. 5. We
could describe the motion by Cartesian coordinates,x(t) andy(t), but it is simpler
to use the angular positionθ(t) because the radiusR is constant. The angleθ is
defined in Fig. 5. It is the angle between the radial vector and thex axis. The value
of θ is sufficient to locate M. From Fig. 5 we see that the Cartesian coordinates are

x(t) = R cos θ(t), (4-1)

y(t) = R sin θ(t). (4-2)

If θ(t) is known, thenx(t) andy(t) can be calculated from these equations.

Figure 5:Circular motion. A
mass M moves on a circle of
radiusR. The angleθ(t) is
used to specify the position. In
radians,θ = s/R wheres is
the arclength, as shown. The
velocity vectorv(t) is tangent
to the circle. The inset shows
the unit vectorŝθ andr̂, which
point in the direction of in-
creasingθ andr, respectively.

In calculus we always use theradian measurefor an angleθ. The radian mea-
sure is defined as follows. Consider a circular arc with arclengths on a circle of
radiusR. The angle subtended by the arc, in radians, is

θ =
s

R
. (radian measure) (4-3)

4.1 Angular velocity and the velocity vector

The angular velocityω(t) is defined by

ω(t) =
dθ

dt
. (angular velocity) (4-4)

This function is theinstantaneousangular velocity at timet. For example, if M
moves with constant speed, traveling around the circle in timeT , then the angular
velocity is constant and given by

ω =
2π
T
. (constant angular velocity) (4-5)
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To derive (4-5) consider the motion during a time interval∆t. The arclength∆s
traveled along the circle during∆t isR∆θ where∆θ is the change ofθ during∆t,
in radians. The angular velocity is then

ω =
∆θ
∆t

=
∆s/R

∆t
. (4-6)

Because the speed is constant,∆θ/∆t is constant and independent of the time in-
terval∆t. Let∆t be one period of revolutionT . The arclength for a full revolution
is the circumference2πR. Thus

ω =
2πR/R
T

=
2π
T
. (4-7)

The instantaneousspeedof the object is the rate of increase of distance with
time,

v(t) = lim
∆t→0

∆s
∆t

= lim
∆t→0

R∆θ
∆t

= R
dθ

dt
= Rω(t). (4-8)

But what is the instantaneousvelocity? Velocity is a vectorv, with both direction
and magnitude. The magnitude ofv is the speed,v = Rω. The direction is tangent
to the circle, which is the same as the unit vectorθ̂. (See Fig. 5.) Thus the velocity
vector is

v = Rωθ̂, (4-9)

which points in the direction of̂θ and has magnitudeRω. In general,v, ω, θ and
θ̂ are all functions of timet as the particle moves around the circle. But of course
for circular motion,R is constant. We summarize our analysis as a theorem:

Theorem 1. The velocity vector in circular motion is

v(t) = Rω(t) θ̂(t). (4-10)

4.2 Acceleration in circular motion

Now, what is theaccelerationof M as it moves on the circle? The acceleration
a is a vector, so we must determine both its magnitude and direction. Unlike the
velocityv, which must be tangent to the circle, the acceleration has both tangential
and radial components.

Recall that we have defined acceleration as the derivative of velocity in the case
of one-dimensional motion. The same definition applies to the vector quantities for
two- or three-dimensional motion. Using the definition of the derivative,

a(t) = lim
∆t→0

v(t+ ∆t)− v(t)
∆t

=
dv
dt
. (4-11)
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The next theorem relatesa for circular motion to the parameters of the motion.

Theorem 2. The acceleration vector in circular motion is

a = R
dω

dt
θ̂ −Rω2 r̂. (4-12)

Proof: We must calculate the derivative ofv, using (4-10) forv. At time t, the
acceleration is

a(t) =
dv
dt

=
d

dt

(
Rωθ̂

)
= R

(
dω

dt
θ̂ + ω

dθ̂

dt

)
. (4-13)

Note that (4-13) follows from the Leibniz rule for the derivative of the product
ω(t)θ̂(t). Now,

dθ̂

dt
= lim

∆t→0

∆θ̂

∆t
. (4-14)

Figure 6 demonstrates that∆θ̂ ≈ −r̂∆θ for small∆θ. (The relation of differen-
tials isdθ̂ = −r̂ dθ.) The direction of∆θ̂ is radially inward. This little result has
interesting consequences, as we’ll see! The derivative is then

dθ̂

dt
= lim

∆t→0

−r̂∆θ
∆t

= −r̂
dθ

dt
= −r̂ω. (4-15)

Substituting this result into (4-13) we find

a(t) = R
dω

dt
θ̂ −Rω2 r̂, (4-16)

which proves the theorem.

Figure 6: Proof thatdθ̂ =
−r̂ dθ. P1 and P2 are points
on the circle with angle dif-
ference∆θ. The inset shows
that ∆θ̂ (= θ̂2 − θ̂1) is cen-
tripetal (i.e., in the direction of
−r̂) and has magnitude∆θ in
the limit of small∆θ.
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For circular motion, the radial component of the acceleration vector isar =
−Rω2. This component ofa is called thecentripetal acceleration. The word
“centripetal” meansdirected toward the center. We may writear in another form.
By Theorem 1,ω = v/R; therefore

ar = −v
2

R
. (4-17)

If the speed of the object is constant, thendω/dt = 0 and the accelerationa is
purely centripetal. Inuniform circular motion, the acceleration vector is always
directed toward the center of the circle with magnitudev2/R.

Imagine a ball attached to a string of lengthR, moving around a circle at con-
stant speed with the end of the string fixed. The trajectory must be a circle because
the string length (the distance from the fixed point) is constant.The ball constantly
accelerates toward the center of the circle (ar = −v2/R) but it never gets any
closer to the center (r(t) = R, constant)!This example illustrates the fact that the
velocity and acceleration vectors may point in different directions. In uniform cir-
cular motion, the velocity is tangent to the circle but the acceleration is centripetal,
i.e., orthogonal to the velocity.

Example 4-6. Suppose a race car travels on a circular track of radiusR = 50 m.
(This is quite small!) At what speed is the centripetal acceleration equal to1 g?

Solution. Using the formulaa = v2/R, and settinga = g, the speed is

v =
√
gR =

√
9.8 m/s2 × 50 m = 22.1 m/s. (4-18)

Converting to miles per hour, the speed is about48 mi/hr. A pendulum suspended
from the ceiling of the car would hang at an angle of 45 degrees to the vertical (in
equilibrium), because the horizontal and vertical components of force exerted by
the string on the bob would be equal, both equal tomg. The pendulum would hang
outward from the center of the circle, as shown in Fig. 7. Then the string exerts
a force on the bob with aninward horizontal component, which is the centripetal
force on the bob.

?

The equationar = −v2/r for the centripetal acceleration in circular motion
was first published by Christiaan Huygens in 1673 in a book entitledHorologium
Oscillatorium. Huygens, a contemporary of Isaac Newton, was one of the great
figures of the Scientific Revolution. He invented the earliest practical pendulum
clocks (the main subject of the book mentioned). He constructed excellent tele-
scopes, and discovered that the planet Saturn is encircled by rings. In his scientific
work, Huygens was guided by great skill in mathematical analysis. Like Galileo
and Newton, Huygens used mathematics to describe nature accurately.
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Figure 7: A race car on a cir-
cular track has centripetal ac-
celerationv2/R. If v2/R =
g, then the equilibrium of a
pendulum suspended from the
ceiling is at 45 degrees to the
vertical. In the frame of refer-
ence of the track, the bob ac-
celerates centripetally because
it is pulled toward the cen-
ter by the pendulum string.
In the frame of reference of
the car there is a centrifugal
force—an apparent (but fic-
titious) force directed away
from the center of the track.
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5 KEPLER’S LAWS OF PLANETARY MOTION

Kepler’s first law is that the planets travel on ellipses with the sun at one focal
point. Newton deduced from this empirical observation that the gravitational force
on the planet must be proportional to1/r2 wherer is the distance from the sun.

Figure 8 shows a possible planetary orbit. The ellipse is characterized by two
parameters:a = semimajor axis ande = eccentricity.

Figure 8: A possible planetary
orbit. The sun S is at the ori-
gin, which is one focal point
of the ellipse, and the planet
P moves on the ellipse. The
large diameter is2a, wherea
is called the semimajor axis.
The distance between the foci
is 2ae wheree is called the ec-
centricity. The perihelion dis-
tance isr− = a(1 − e) and
the aphelion distance isr+ =
a(1 + e). A circle is an ellipse
with e = 0.

5.1 Kepler’s third law

Kepler’s third law relates the periodT and the semimajor axisa of the ellipse. To
the accuracy of the data available in his time, Kepler found thatT 2 is proportional
to a3. The next example derives this result from Newtonian mechanics, for the
special case of a circular orbit. A circle is an ellipse with eccentricity equal to
zero; then the semimajor axis is the radius.

Example 5-7. Show thatT 2 ∝ r3 for a planet that revolves around the sun on a
circular orbit of radiusr.7

Solution. In analyzing the problem, we will neglect the motion of the sun. More
precisely, both the sun and the planet revolve around their center of mass. But
because the sun is much more massive than the planet, the center of mass is ap-
proximately at the position of the sun, so that the sun may be considered to be at
rest. Neglecting the motion of the sun is a good approximation. A more accurate

7We consider an ideal case in which theotherplanets have a negligible effect on the planet being
considered. This is a good approximation for the solar system, but not exact.
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calculation is in exercise 21.

Letm denote the mass of the planet, andM the mass of the sun.

For a circular orbit the angular speed of the planet is constant,dω/dt = 0.
Therefore the acceleration isa = −rω2r̂; or, in terms of the speedv = rω,

a = −v
2

r
r̂. (5-1)

The direction is−r̂, i.e., centripetal, toward the sun. The gravitational force exerted
by the sun on the planet is

F = −GMm

r2
r̂, (5-2)

which is also centripetal. Equation (5-2) is Newton’s theory of Universal Gravita-
tion, in which the force is proportional to1/r2.

Newton’s second law of motion states thatF = ma. Therefore,

mv2

r
=
GMm

r2
. (5-3)

The speed of the planet is

v =
(
GM

r

)1/2

. (5-4)

The distance traveled in timeT (one period of revolution) is2πr (the circumference
of the orbit), so the speed isv = 2πr/T . Substituting this expression forv into
(5-4) gives(

2πr
T

)2

=
GM

r
. (5-5)

Or, rearranging the equation,

T 2 =
4π2r3

GM
; (5-6)

we see thatT 2 is proportional tor3, as claimed.

In obtaining (5-6) we neglected the small motion of the sun around the center-
of-mass point. This is a very good approximation for the solar system. In this
approximation,T 2/r3 is constant, i.e.,T 2/r3 has the same value for all nine plan-
ets.

We have only considered a special case—a circular orbit. In general, a planetary
orbit is anellipse. The calculation of elliptical orbits is more complicated, but the
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final result for the period is simple

T 2 =
4π2a3

G(M +m)
≈ 4π2a3

GM
(5-7)

wherea is the semimajor axis.

5.2 Kepler’s second law

Kepler’s second law states that the radial vector sweeps out equal areas in equal
times. This law is illustrated in Fig. 9. In Newtonian mechanics it is a consequence
of conservation of angular momentum. The next two examples show how Kepler’s
second law follows from Newton’s theory.

Figure 9: Kepler’s second
law. The radial vector sweeps
out equal areas in equal times.
(a) The radial vector sweeps
out the shaded region as the
planet moves from P1 to
P2. (b) The planet moves
faster near perihelion (PH) and
slower near aphelion (AH).

Example 5-8. Conservation of angular momentum

The angular momentumL of an object of massm that moves in thexy plane is
defined by

L = m (xvy − yvx) . (5-8)

Show thatL is constant if the force on the object is central.
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Solution. To show that a function is constant, we must show that its derivative is
0.8 In (5-8), the coordinatesx andy, and velocity componentsvx andvy, are all
functions of timet. But the particular combination inL is constant, as we now
show. The derivative ofL is

dL

dt
= m

[
dx

dt
vy + x

dvx

dt
− dy

dt
vx − y

dvx

dt

]
= mvxvy + xFy −mvyvx − yFx

= xFy − yFx. (5-9)

In the first step we have used the fact thatdx/dt = v, anddv/dt = a; also, by
Newton’s second law, the accelerationa is equal toF/m. The final line (5-9) is
called the torque on the object.

For any central force the torque is0. The term “central force” means that the
force is in the direction of±r̂, i.e., along the line to the origin. (The sign—attractive
or repulsive— is unimportant for the proof of conservation of angular momentum.)
Figure 10 shows a central forceF toward the origin. The components ofF are

Fx = −F cos θ and Fy = −F sin θ (5-10)

whereF is the strength of the force and the minus signs mean thatF is toward0.
Thus the torque on the object is

torque = xFy − yFx

= −r cos θ F sin θ + r sin θ F cos θ = 0. (5-11)

Since the torque is0, equation (5-9) implies thatdL/dt = 0. Since the derivative
is 0, the angular momentumL is constant, as claimed.

Figure 10: An attractive cen-
tral force. The Cartesian
coordinates at P arex =
r cos θ andy = r sin θ. The
force components areFx =
−F cos θ andFy = −F sin θ
whereF is the magnitude of
the force vector. The torque,
xFy − yFx, is 0.

8The derivative of any constant is0.
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Example 5-9. Kepler’s law of equal areas

Show that the radial vector from the sun to a planet sweeps out equal areas in
equal times.

Solution. Figure 9(a) shows the elliptical orbit. The shaded area∆A is the area
swept out by the radial vector between timest andt+∆t. The shaded area may be
approximated by a triangle, with baser and heightr∆θ, where∆θ is the change
of the angular position betweent andt+ ∆t. Approximating the area as a triangle
is a good approximation for small∆t. Now consider the limit∆t → 0; i.e., ∆t
and∆A become the differentialsdt anddA. The area of the triangle becomes

dA =
1
2
× base× height =

1
2
× r × rdθ = 1

2r
2dθ. (5-12)

Thus, in the limit∆t→ 0, where we replace∆t by dt,

dA

dt
=

1
2
r2
dθ

dt
= 1

2r
2ω. (5-13)

We’ll use this result presently.

But now we must express the angular momentum in polar coordinates. The
position vector of M isx = rr̂, and itsx andy components are

x = r cos θ and y = r sin θ. (5-14)

The velocity vector is

v =
dx
dt

=
dr

dt
r̂ + r

dr̂
dt

=
dr

dt
r̂ + r

dθ

dt
θ̂; (5-15)

note thatdr̂ = θ̂ dθ.9 So, thex andy components of velocity are

vx =
dr

dt
cos θ − r

dθ

dt
sin θ, (5-16)

vy =
dr

dt
sin θ + r

dθ

dt
cos θ. (5-17)

Now, L is defined in (5-8); substituting the polar expressions forx, y, vx andvy

we find

L = m (xvy − yvx)

= m

[
r
dr

dt
cos θ sin θ + r2

dθ

dt
cos2 θ

]
−m

[
r
dr

dt
sin θ cos θ − r2

dθ

dt
sin2 θ

]
= mr2

dθ

dt

(
cos2 θ + sin2 θ

)
= mr2

dθ

dt
. (5-18)

9Exercise 5.3.1.
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The result is

L = mr2ω. (5-19)

Comparing this result to (5-13) we see thatdA/dt is equal toL/2m. But L is
a constant of the motion by conservation of angular momentum. ThusdA/dt is
constant. In words,the rate of change of the area is constant, i.e., independent of
position on the orbit. Hence Kepler’s second law is explained: The area increases
at a constant rate, so equal areas are swept out in equal times.

5.3 The inverse square law

Kepler’s first law is that the planets travel on ellipses with the sun at one focal
point. We will prove that this observation implies that the force on the planet must
be an inverse square law, i.e., proportional to1/r2 wherer is the distance from
the sun. The calculations depend on all that we have learned about derivatives and
differentiation.

The equation for an elliptical orbit in polar coordinates(r, θ) is

r(θ) =
a(1− e2)
1 + e cos θ

(5-20)

wherea = semimajor axis ande = eccentricity. Figure 8 shows a graph of the
ellipse. What force is implied by the orbit equation (5-20)? The radial acceleration
is10

ar =
d2r

dt2
− r

(
dθ

dt

)2

. (5-21)

The first term involves the change of radius; the second term is the centripetal
acceleration−rω2. Now, ar must equalFr/m by Newton’s second law. To de-
termine the radial forceFr we must expressar as a function ofr. We know that
angular momentum is constant; by (5-19),

mr2
dθ

dt
= L, so

dθ

dt
=

L

mr2
. (5-22)

Now starting from (5-20), and applying the chain rule,11

dr

dt
=

dr

dθ

dθ

dt
=

−a(1− e2)
(1 + e cos θ)2

(−e sin θ)
dθ

dt

=
a(1− e2)e sin θ
(1 + e cos θ)2

L(1 + e cos θ)2

ma2(1− e2)2
=

Le sin θ
ma(1− e2)

; (5-23)

10See Exercise 21.
11The calculations of (5-23) and (5-24) require these results from calculus: the derivative (with

respect toθ) of cos θ is− sin θ, and the derivative ofsin θ is cos θ.



Mechanics 26

and, taking another derivative,

d2r

dt2
=

Le cos θ
ma(1− e2)

dθ

dt
=

Le cos θ
ma(1− e2)

L

mr2
. (5-24)

Combining these results in (5-21), the radial component of the acceleration is

ar =
L2e cos θ

m2a(1− e2)r2
− r

(
L

mr2

)2

=
L2

m2r2

{
e cos θ
a(1− e2)

− 1 + e cos θ
a(1− e2)

}
=

−L2

m2a(1− e2)r2
. (5-25)

By Newton’s second law, then, the radial force must be

Fr = mar = − k

r2
where k =

L2

ma(1− e2)
. (5-26)

Our result is that the force on the planet must be an attactive inverse-square-law,
Fr = −k/r2. The orbit parameters are related to the force parameterk by

L2 = ma(1− e2)k. (5-27)

5.3.1 Newton’s Theory of Universal Gravitation

From the fact that planetary orbits are elliptical, Newton deduced thatFr = −k/r2.
Also,k must be proportional to the planet’s massm becauseT 2 ∝ a3, independent
of the mass (cf. Section 9.5.1). But thenk must also be proportional to the solar
mass, because for every action there is an equal but opposite reaction. Therefore
the force vector must be

F = Frr̂ = −GMm

r2
r̂ (5-28)

whereG is a universal constant. Newton’s theory of universal gravitation states
that any two masses in the universe,m andM , attract each other according to the
force (5-28).

Newton’s gravitational constantG cannot be determined by astronomical ob-
servations, because the solar massM is not known independently.G must be
measured in the laboratory. An accurate measurement ofG is very difficult, and
was not accomplished in the time of Newton. The first measurement ofG was by
Henry Cavendish in 1798.G is hard to measure because gravity is extremely weak,

G = 6.67× 10−11 m3 s−2 kg−1. (5-29)

Newton’s theory of gravity is very accurate, but not exact. A more accurate
theory of gravity—the theory of general relativity—was developed by Einstein. In
relativity, planetary orbits are not perfect ellipses; the orbitsprecessvery slowly.
Indeed this precession is observed in precise measurements of planetary positions,
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and the measurements agree with the relativistic calculation.

? ? ?

The examples in this introduction to classical mechanics show how calculus
is used to understand profound physical observations such as the motion of the
planets. Calculus is essential in the study of motion.
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EXERCISES

Section 2: Position, velocity, and acceleration

1. Show thatẋ = v andẍ = a for the functions in Table 1.

2. Consider a car driving on a straight road at 60 mph (mi/hr). (a) How far does it
travel in 1 second? (b) What is the speed in ft/s?

3. Race car. A race car accelerates on a drag strip from 0 to 60 mph in 6 seconds.

(a) What is the accelerationa? Expressa in ft/sec2.

(b) How far does the car travel in that 6 seconds? Express the answer in feet.

4. The graph in Fig. 11 shows the accelerationa(t) of an object, as a function of
time t. At t = 0 the velocity is0. Make plots of velocityv(t) and positionx(t).
Put accurate scales on the axes. What is the final position?

Figure 11: Exercise 4.

5. Consider the motion shown in the graph of positionx as a function of time
t, shown in Fig. 12. Sketch graphs of the velocityv(t) and accelerationa(t). In
words, state what is happening betweent = 2 and3 s; betweent = 7 and7.75 s.

Figure 12: Exercise 5.

6. Suppose a massm = 3 kg moves along thex axis according to the formula

x(t) = Ct2(20− t)2
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for 0 ≤ t ≤ 20. (The timet is measured in seconds.) The initial acceleration (at
t = 0) is 4 m/s2.

(a) DetermineC.

(b) Determine the velocity att = 5, 10, 15, and20 s.

(c) Find the force on the object, in newtons, att = 10 s.

(d) Describe the motion in words.

7. Consider an object moving in one dimension as illustrated in Fig. 13.

(a) The acceleration betweent = 0 and3 s is constant. What is the acceleration?

(b) The acceleration betweent = 3 and4 s is constant. What is the acceleration?

(c) In words, what is happening fort > 4 s?

Figure 13: Exercise 7.

8. Conservation of energy is a unifying principle in science. For the dynamics of a
particle moving in one dimension, the energy is

E = 1
2mv

2 + U(x)

wherev = dx/dt andU(x) = potential energy. Show thatE is constant, i.e.,
dE/dt = 0. (Hints: The force and potential energy are related byF (x) =
−dU/dx. Use the chain rule to calculatedU/dt, and remember Newton’s second
law.)

9. ForceF (x) and potential energyU(x), as functions of positionx, are related by
F (x) = −dU/dx. An object M is attached to one end of a spring, and the other
end of the spring is attached to an immovable wall. The potential energy of the
spring is1

2kx
2 wherex = displacement of M from equilibrium. (x can be positive

or negative.) Show that the force on M doubles as the displacement doubles. Show
that the force is opposite in sign to the displacement. What does this imply about
the direction of the force?

10. A stone is dropped from a tower of heightH. Let y(t) be the height above the
ground (y = 0 at ground level) as a function of timet. The gravitational potential
energy isU(y) = mgy. Using the equations for constant accelerationay = −g,
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write a formula for total energyE as a function of timet. IsE constant? What is
the value ofE?

Section 3: Projectiles

11. Consider projectile motion, neglecting air resistance. Sketch a graph of the
horizontal coordinatex(t) as a function of timet. Sketch a graph of the vertical
coordinatey(t) as a function of timet. Sketch a parametric plot of the vertical co-
ordinatey versus the horizontal coordinatex, with t as the independent parameter.
(Try using the parametric plot mode of a graphing calculator.) What curve is the
graph ofy versusx?

12. A ball is thrown horizontally at 50 mi/hr from a height of 5 ft. Where will it hit
the ground?

13. Calculate the initial speed of a football in a kickoff. Assume that the initial
direction is 45 degrees above the horizontal, and that the ball hits the ground 60
meters downfield.

14. A boy stands at the peak of a hill, which slopes down away from him at angleφ
with repect to the horizontal. He throws a rock with speedv0 at angleθ with repect
to the horiztonal. Find the value ofθ such that the rock will travel the maximum
distance down the hill before hitting the ground.

Section 4: Circular motion

15. Consider a go-cart moving on a circular track of radiusR = 40 m. Suppose
it starts from rest and speeds up to60 km/hr in 20 seconds (with constant acceler-
ation). What is the acceleration vector att = 10 s? Give both the direction (angle
from the tangent) and the magnitude.

16. Imagine a ball attached to a string of lengthR, moving along a circle at constant
speed with the end of the string fixed. The ball constantly accelerates toward the
center of the circle but it never gets any closer to the center. According to Newton’s
second law theremust bea force in the direction of the acceleration. What is this
force? (What is exerting the force, and what kind of force is it?) Is the force
centripetal? If so, why?

17. A race car travels at constant speed around a circular track. LetR = radius of
the track andv = speed of the car. A small mass is suspended from the ceiling of
the car as a pendulum. (a) Determine the angle of equilibriumθ of the pendulum.
(b) For what speed is the angleθ = 60 degrees?

Section 5: Motion of the planets

18. The Earth’s orbit around the Sun is nearly circular, with radiusR⊕ = 1.496×
1011 m and periodT = 1 y. From this, and thelaboratorymeasurement of New-
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ton’s gravitational constant,G = 6.67 × 10−11m3s−2kg−1, calculate the mass of
the sun.

19. Use a graphing calculator or computer program to plot the curve defined by Eq.
(5-20). (Pick representative values of the parametersa ande.) This is an example
of apolar plot, in which the curve in a plane is defined by giving the radial distance
r as a function of the angular positionθ. Be sure to set the aspect ratio (= ratio of
length scales on the horizontal and vertical axes) equal to1.

20. Consider a particle M that moves on thexy plane. The polar coordinates (r, θ)
and unit vectors (̂r, θ̂) are defined in Fig. 14.

(a) Show thatx = r cos θ andy = r sin θ.

(b) Show that for a small displacement of M,

∆r̂ ≈ θ̂ ∆θ and ∆θ̂ ≈ −r̂∆θ.

(Hint: See Fig. 6 but generalize it to include a radial displacement.)

(c) The position vector of M isx = rr̂, which has magnituder and direction̂r. In
general, bothr andr̂ vary with timet, as the object moves. Show that the velocity
vector is

v =
dr

dt
r̂ + r

dθ

dt
θ̂.

Figure 14: Exercise 20.

21. Derive Eq. (5-21) for the radial componentar of the acceleration in polar
coordinates. [Hint: Use the results of the previous exercise.]

22. Prove that the relation of parameters in (5-27) is true for a circular orbit. (For
a circle, the eccentricitye is 0.)

23. Look up the orbital data—periodT and semimajor axisa—for the planets. Use
the year (y) as the unit of time forT , and the astronomical unit (AU) as the unit of
distance fora. CalculateT 2/a3 for all nine planets. What do you notice about the
values ofT 2/a3? Explain.

24. The angular momentum vectorL for motion of a particle in three dimensions
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is defined byL = x × p. Prove thatdL/dt is equal to the torque on the particle
around the origin,.

25. Reduced mass.Suppose two masses,m1 andm2, exert equal but opposite
forces on each other. Define the center of mass positionR and relative vectorr by

R =
m1x1 +m2x2

m1 +m2
and r = x1 − x2.

(Note thatr is the vector fromm2 tom1.)

(a) Show thatd2R/dt2 = 0, i.e., the center of mass point moves with constant
velocity. (It could be at rest.)

(b) Show that

µ
d2r
dt2

= F(r)

whereµ is the reduced mass, m1m2/(m1 + m2). Thus the two-body problem
reduces to an equivalent one-body problem with the reduced mass.

(c) Show that Kepler’s third law for the case of a circular orbit should properly be

T 2 =
4π2r3

G(M +m)

rather than (5-6). Why is (5-6) approximately correct?

26. Consider abinary star. Assume the two stars move on circular orbits. Given
the massesM1 andM2, and the distancea between the stars, determine the period
of revolutionT .
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General Exercises

27. Platform diving. A diver jumps off a 10 m platform. How many seconds
does she have to do all her twists and flips before she enters the water? (Assume
her initial upward velocity is0.)

28. Conservation of energy. A rock falls from a cliff 100 m high, and air
resistance can be neglected.

(a) Ploty (= height) versust (= time).

(b) Plotv (= speed) versust.

(c) Plotv2/2 + gy versust. Describe the result in words.

29. Braking. (a) You are driving on the highway at60 mph (= 88 ft/s). There is
an accident ahead, so you brake hard, decelerating at0.3 g = 9.6 ft/s2.

(a) How much time does it take to stop?

(b) How far will you travel before stopping?

(c) How far would you travel if your initial speed were75 mph, assuming the same
deceleration?

30. A ball rolling down an inclined plane has constant accelerationa. It is released
from rest. U is a unit of length.

During the first second the ball travels a distance of1 U on the inclined plane.

(a) How far does it travel during the second second?

(b) How far does it travel during the third second?

(c) How far does it travel during the tenth second?

(d) How far did it travel altogether after 10 seconds?

(e) What isa? (Express the answer in U/s2.)

(f) Galileo made careful measurements of a ball rolling down an inclined plane, and
discovered that the distanceD is given by the equationD = 1

2at
2. He observed

that the distances for fixed time intervals are in proportion to the sequence of odd
integers. Do your anwers agree?

31. A castle is 150 m distant from a catapult. The catapult projects a stone at 45
degrees above the horizontal. What initial speedv0 is required to hit the castle?

(Hint: The initial velocity vector isv0 = îv0 cos 45 + ĵv0 sin 45; that is,v0x =
v0y = v0/

√
2.)

32. Baseball home run.A slugger hits a ball. The speed of the ball as it leaves
the bat isv0 = 100 mi/hr = 147 ft/s. Suppose the initial direction is45 degrees
above the horizontal, and the initial height is3 ft. The acceleration due to gravity
is 32 ft/s2.

(a) Ploty as a function ofx, e.g., using Mathematica or a graphing calculator.
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(b) Whenpreciselydoes the ball hit the ground?

(c) Wherepreciselydoes the ball hit the ground?

(d) We have neglected air resistance. Is that a good approximation? Justify your
answer.

33. Conservation of energy for a projectile

(a) Consider a projectile, moving under gravity but with negligible air resistance,
such as a shot put. Assume these initial values

x0 = 0 and y0 = 1.6 m,
v0x = 10m/s and v0y = 8m/s.

Use Mathematica or a graphing calculator to make plots ofx versust andy versus
t. Show scales on the axes.

(b) Now plot the total energy (kinetic plus potential) versust,

E(t) = 1
2

[
v2
x(t) + v2

y(t)
]
+mgy(t)

for m = 7 kg.

(c) Prove mathematically thatE is a constant of the motion.

34. The jumping squirrel. A squirrel wants to jump from a point A on a branch
of a tree to a point B on another branch. The horizontal distance from A to B is
x = 5 ft, and the vertical distance isy = 4 ft. If the squirrel jumps with an initial
speed of 20 ft/s, at what angle to the horizontal should it jump?

35. Flight to Mars. To send a satellite from Earth to Mars, a rocket must accelerate
the satellite until it is in the correct elliptical orbit around the sun. The satellite does
not travel to Mars under rocket power, because that would require more fuel than
it could carry. It just moves on a Keplerian orbit under the influence of the sun’s
gravity.

The satellite orbit must have perihelion distancer− = RE (= radius of Earth’s
orbit) and aphelion distancer+ = RM (= radius of Mars’s orbit) as shown in the
figure. The planetary orbit radii are

RE = 1.496× 1011 m and RM = 2.280× 1011 m. (5-30)

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the result in months and
days, counting one month as 30 days.

36. Parametric plots in Mathematica

A parametric plot is a kind of graph—a curve ofy versusx wherex andy are
known as functions of an independent variablet calledthe parameter. To plot the
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Figure 15: Exercise 35.

curve specified by

x = f(t) and y = g(t),

the Mathematica command is

ParametricPlot[{f[t],g[t]},{t,t1,t2},

PlotRange->{{x1,x2},{y1,y2}},

AspectRatio->r]

Here{t1,t2 } is the domain oft, and{x1,x2 } and{y1,y2 } are the ranges of
x andy. To give thex andy axes equal scales,r should have the numerical value
of (y2-y1)/(x2-x1) .

Use Mathematica to make the parametric plots below. In each case name the curve
that results.

(a)x(t) = t, y(t) = t− t2.

(b) x(t) = t, y(t) = 1/t.

(c) x(t) = cos(2πt), y(t) = sin(2πt).

(d) x(t) = 2 cos(2πt), y(t) = 0.5 sin(2πt).

(e)x(t) = cos(2πt/3), y(t) = sin(2πt/7).

37. Parametric equations for a planetary orbit

The sun is at the origin and the plane of the orbit has coordinatesx andy. We can
write parametric equations for the timet, and coordinatesx andy, in terms of an
independent variableψ:

t =
T

2π
(ψ − ε sinψ)
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x = a (cosψ − ε)

y = a
√

1− ε2 sinψ

The fixed parameters areT = period of revolution,a = semimajor axis, andε =
eccentricity.

(a) The orbit parameters of Halley’s comet are

a = 17.9 AU and ε = 0.97.

Use Mathematica to make a parametric plot of the orbit of Halley’s comet. (You
only need the parametric equations forx andy, letting the variableψ go from 0 to
2π for one revolution.)

(b) Calculate the perihelion distance. Express the result in AU.

(c) Calculate the aphelion distance. Express the result in AU. How does this com-
pare to the radius of the orbit of Saturn, or Neptune?

(d) Calculate the period of revolution. Express the result in years.

38. Parametric surfaces

A parametriccurveis a curve on a plane. The curve is specified by giving coordi-
natesx andy as functions of an independent parametert.

A parametricsurfaceis a surface in 3 dimensions. The surface is specified by
giving coordinatesx, y, andz as functions of 2 independent parametersu andv.
That is, the parametric equations for a surface have the form

x = f(u, v), y = g(u, v), z = h(u, v).

As u andv vary over their domains, the points(x, y, z) cover the surface.

The Mathematica command for plotting a parametric surface isParametricPlot3D .
To make a graph of the surface, execute the command

ParametricPlot3D[{f[u,v],g[u,v],h[u,v]},

{u,u1,u2},{v,v1,v2}]

In this command,(u1, u2) is the domain ofu and(v1, v2) is the domain ofv. Be-
fore giving the command you must define in Mathematica the functionsf[u,v],
g[u,v], h[u,v] . For example, for exercise (a) below you would define

f[u_,v_]:=Sin[u]Cos[v]

Make plots of the following parametric surfaces. In each case name the surface.

(a) For0 ≤ u ≤ π and0 ≤ v ≤ 2π,

f(u, v) = sinu cos v
g(u, v) = sinu sin v
h(u, v) = cosu
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(b) For0 ≤ u ≤ 2π and−0.3 ≤ v ≤ 0.3,

f(u, v) = cosu+ v cos(u/2) cosu
g(u, v) = sinu+ v cos(u/2) sinu
h(u, v) = v sin(u/2)

(c) For0 ≤ u ≤ 2π and0 ≤ v ≤ 2π,

f(u, v) = 0.2(1− v/(2π)) cos(2v)(1 + cosu) + 0.1 cos(2v)
g(u, v) = 0.2(1− v/(2π)) sin(2v)(1 + cosu) + 0.1 sin(2v)
h(u, v) = 0.2(1− v/(2π)) sinu+ v/(2π)
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