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EXPERIMENT 11 
The Spring 

Hooke’s Law and Oscillations 
 
Objectives 

• To investigate how a spring behaves when it is stretched under the influence of an 
external force.  To verify that this behavior is accurately described by Hooke’s Law. 

• Measure the spring constant, k in two independent ways 
 
Apparatus 
 
A spring, photogate system, and masses will be used. 
 
Theory 
 
Hooke's Law 
 
An ideal spring is remarkable in the sense that it is a system where the generated force is 
linearly dependent on how far it is stretched.  Hooke's law describes this behavior, and we 
would like to verify this in lab today.  In order to extend a spring by an amount Δx from its 
previous position, one needs a force F which is determined by F = kΔx.  Hooke’s Law states 
that: 
 

FS = -kΔx        (1)                          
 
 
Here k is the spring constant which is a quality particular to each spring and Δx is the 
distance the spring is stretched or compressed.  The force FS is a restorative force and its 
direction is opposite to the direction of the spring’s displacement Δx.  
 
To verify Hooke’s Law, we must show that the spring force FS and the distance the spring is 
stretched Δx are proportional to each other (that just means linearly dependant on each 
other), and that the constant of proportionality is -k.  
 
In our case the external force is provided by attaching a mass m to the end of the spring.  The 
mass will of course be acted upon by gravity, so the force exerted downward on the spring 
will be Fg = mg.  See Figure 1.  Consider the forces exerted on the attached mass. The force 
of gravity (mg) is pointing downward.  The force exerted by the spring (-kΔx) is pulling 
upwards. When the mass is attached to the spring, the spring will stretch until it reaches the 
point where the two forces are equal but pointing in opposite directions: 

Fs – Fg = 0 
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or 

 mg = -kΔx (2)
 This point where the forces balance each other out is known as the equilibrium point.  The 

spring + mass system can stay at the equilibrium point indefinitely as long as no additional 
external forces come to be exerted on it. The relationship in (2) allows us to determine the 
spring constant k when m, g, and Δx are known or can be measured.  This is one way in 
which we will determine k today. 

 
Figure 1:  The Spring in Equilibrium 

 
 
 
Oscillation 
 
The position where the mass is at rest is called the equilibrium position (x = x0). As we now 
know, the downward force due to gravity Fg = mg and the force due to the spring pulling 
upward FS = -kΔx cancel each other.  This is shown in the first part of Figure 2.  However, if 
the string is stretched beyond its equilibrium point by pulling it down and then releasing it, 
the mass will accelerate upward (a > 0), because the force due to the spring is larger than 
gravity pulling down.  The mass will then pass through the equilibrium point and continue to 
move upward. Once above the equilibrium position, the motion will slow because the net 
force acting on the mass is now downward (i.e. the downward force due to gravity is constant 
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while the upwardly directed spring force is getting smaller0.   The mass and spring will stop 
and then its downward acceleration will cause it to move back down again. The result of this 
is that the mass will oscillate around the equilibrium position. These steps and the forces (F), 
accelerations (a) and velocities (v) are illustrated in Figure 2 for the first complete cycle of an 
oscillation.  The oscillation will proceed with a characteristic period, T, which is determined 
by the spring constant and the total attached mass. This period is the time it takes for the 
spring to complete one oscillation, or the time necessary to return to the point where the 
cycle starts repeating (the points where x, v, a, are the same).  One complete cycle is shown 
in Figure 2 and the time of each position is indicated in terms of the period T.  
 

 
Figure 2:  One Cycle of an Oscillation of the Spring 

 
The period is given by 
 

                                                                  
k
mT π2=                                                         (3) 

 
By measuring the period for given masses the spring constant can be determined.  This is the 
second way we will determine k today.  You will use this value of k to verify that the 
proportionality constant you determined for Hooke’s Law in the first part is indeed the 
correct k for the spring. 
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Procedure 
 
Part I:  Hooke's Law 
 
Determine the initial mass, m0, by weighing the support table.  Next attach the support table 
for the masses to the spring. With the zero end of a meter stick on the lab table, measure the 
position of the end of the spring after the support table has been attached.  This position is the 
initial position x0.   
 
Start measuring by increasing the mass attached to the spring to 120 grams (this includes the 
mass of the support table).  Then increase the mass by increments of 10 grams up to a total of 
220 grams and measure the corresponding position of the spring for each mass.  This results 
in a series of measurements mi and xi.  To calculate the forces due to gravity and the spring 
calculate Δxi = xi – x0 and Δmi = mi – m0.  The corresponding forces for gravity and the 
spring are Fg = Δmg and FS = -kΔx.  Right now you do not know k, so you will only have 
your spreadsheet calculate Fg for you.  But remember, at equilibrium positions the magnitude 
of Fg equals the magnitude of FS!  Therefore, 
 
      FS = Δmg              (4)
   
 
The direction of FS is upward (define this as positive).  Graph FS vs. Δx – include horizontal 
error bars on your data points.  If you have a straight line you have already verified the first 
part of Hooke’s Law, that force and distance the spring is stretched are linearly dependent.  
Have the computer fir your data with a best-fit line including the equation of the line and the 
uncertainty in the slope.  Determine the spring constant k and its uncertainty from the slope.  
We will verify this value of k by determining k a second way that is independent of your 
ability to make accurate length measurements. 
  
Part II:  Period of Oscillation 
 
Determine the period for attached masses varying from 120 to 220 g in steps of 20 g (the 
same masses as in Part I).  When displacing the masses, DO NOT stretch the spring more 
than about 2 cm from its equilibrium position.  Set the photogate to the “PEND” setting.  
Then use the photogate to measure the period of the oscillation by causing the masses to 
oscillate through the photogate.   The “PEND” setting will start timing the first time the 
masses pass through it, continue timing through the second pass, and stop timing when it 
senses the masses a third time.  Thus it measures the time for the masses, to complete a 
whole period of the oscillation. 
 
If we square both sides of equation (3) we find: 
 

                                                              
k

mT
2

2 4π
=                                                            (5) 
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Equation (5) has the same form as the equation of a straight line y = mx + b, with an intercept 
of zero (i.e. b = 0).  Notice in this equation, T2 corresponds to y and m corresponds to x.   
 
The mass m in equation (5) is the total mass felt by the spring.  The oscillating mass includes 
the entire mass of the support table.  Furthermore, to get the total mass felt by the spring you 
should add 1/3 of the mass of the spring itself to the total mass attached.  Your TA will give 
you the mass per unit length of your spring.  Measure the length of the spring and use it to 
calculate the mass of the spring.  Make a graph of T2 vs. m.  Fit the graph with a best fit line; 
find the slope of the line and its uncertainty.   
 
 
Questions 
 

1) Are your data consistent with Hooke’s Law?  Specifically, is the spring force linearly 
dependant on how much the spring is stretched and is it a restorative force?  Why or 
why not? 

 
 
 
 
 
 
 
 
 

2) Calculate the spring constant and its uncertainty using the information obtained from 

your graph of T2 vs. m.  Hint: The fractional uncertainty in the spring constant
k
kδ  is 

equal to the fractional uncertainty in the slope. 
 
 
 
 
 
 
 
 

3) You obtained the spring constant in two independent ways.  Discuss the consistency 
of your two measurements of the spring constant. 
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4) When a mass m is attached to a spring it exerts a force W=mg on the spring and the 

length of the spring is changed by Δx.  If the single spring is replaced with a) two 
identical springs in series, what happens to Δxseries compared to the case of a single 
spring?   b)  If the single spring is replaced by two identical springs in parallel, what 
happens to Δxparallel compared to the case of a single spring?  Assume all springs have 
the same spring constant and always compare to the single spring case.  Answer each 
question by stating if Δx increases, decreases or remains unchanged.  Also, what are 
Δxseries and Δxparallel in terms of  Δx for the single spring case (Hint draw a force 
diagram of the system – the net force on the mass must be zero). 

 
 

  
 


