
EXPERIMENT 9B 
Rotational Motion 2  

Moment of inertia 
 

 
Objectives 

• to familiarize yourself with the concept of moment of inertia, I, which plays the 
same role in the description of the rotation of a rigid body as mass plays in the 
description of linear motion 

• to investigate how changing the moment of inertia of a body affects its rotational 
motion 

 
APPARATUS   
 

See Figure 3a. 
 
THEORY 
 
If we apply a single unbalanced force, F, to an object, the object will undergo a linear 
acceleration, a, which is determined by the unbalanced force acting on the object and the 
mass of the object. The mass is a measure of an object's inertia, or its resistance to being 
accelerated.  Newton’s Second Law expresses this relationship: 

 F = ma 

If we consider rotational motion, we find that a single unbalanced torque 

 τ = (Force)(lever arm)#  

produces an angular acceleration, α, which depends not only on the mass of the object 
but on how that mass is distributed.  The equation which is analogous to F = ma for an 
object that is rotationally accelerating is 

 τ = I α. (1) 

where the Greek letter tau (τ) represents the torque in Newton-meters, α is the angular 
acceleration in radians/sec2   and I is the moment of inertia in kg*m2.  The moment of 
inertia is a measure of the way the mass is distributed on the object and determines its 
resistance to angular acceleration.   
 

                                                 
# In this lab the lever arm will be the radius at which the force is applied (the radius of the axle).  This is 
due to the fact that the forces will be applied tangentially, i.e., perpendicular to the radius. The general form 
of this relationship is θτ sin** armleverforce= , where θ is the angle between the force and the 
lever arm.  However, in this experiment θ is 90° and sin(90°) = 1. 



Every rigid object has a definite moment of inertia about any particular axis of rotation. 
Here are a couple of examples of the expression for I for two special objects: 
 
One point mass m on a weightless rod of radius r  (I = mr2): 
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Figure 1 
 
 
 
 
 

Two point masses on a weightless rod (I = m1r12 + m2r22 ): 
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Figure 2 



 
To illustrate we will calculate the moment of inertia for a mass of 2 kg at the end of a 
massless rod that is 2 m in length (object #1 above): 

I = mr2 = (2 kg) (2 m)2 = 8 kg*m2 

If a force of 5 N were applied to the mass perpendicular to the rod (to make the lever arm 
equal to r) the torque is given by: 

τ  = Fr = (5 N) (2 m) = 10 N*m 

By equation (1) we can now calculate the angular acceleration: 
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NOTE:  The moment of inertia of a complicated object is found by adding up the 
moments of each individual piece (object #2 above is the sum of two object #1 
components).   
 
Experimental Apparatus 
 

 
Figure 3a: Moment of Inertia Apparatus 

 
Figure 3b:  Central Pulley (axle) 



 
 
In our case, the rigid body consists of two cylinders, which are placed on a metallic rod at 
varying radii from the axis of rotation.  The cylinders and rod are supported by a rotating 
platform attached to a central pulley and nearly frictionless air bearings.  A side view of 
the apparatus is shown in Figure 3a and a top view of the central pulley is shown in 
Figure 3b.   
 
In this experiment, we will change the moment of inertia of the rotating body by 
changing how the mass is distributed on the rotating body.  We will place the two 
cylindrical masses at four different radii such that r = r1 = r2 in each of the four cases.  We 
will then use our measurements to calculate the moment of inertia (I) for each of the four 
radial positions of the cylindrical masses (r).  The sum of the two cylindrical masses 
(m1+m2) can then be found from a graph of I versus r2.    
 
To set up your rigid body, wrap the string around the central pulley (axle) and run it over 
the side pulley to a known weight as shown in Figure 3a.   
 
 
Consider the following steps: 
 
If we release the weight from rest, the tension in the string will exert a torque on the rigid 
body causing it to rotate with a constant angular acceleration α.  The angular acceleration 
of the rigid body is related to the linear acceleration of the falling mass by: 
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or 
 

               αRa =            (2) 
 
From Figure 3a and Newton’s Second Law, the tension in the string is: 
 

MaMgT −=           (3) 
 
The tension in the string causes a net torque on the rigid body.  Since torque = (Lever 
arm) (Force), the net torque on the rigid body is given by: 

 
TR×=τ              (4) 

 
The moment of inertia of the rigid body is then found from equation 1 ( ατ I= ). 
 



   
PROCEDURE 
 
The apparatus is delicate.  Do not rotate the rotating table or side pulley unless air is 
flowing through the bearings. 
 

1. Measure and record the masses of the hanging mass (M) and the two cylinders 
(m1 and m2).   

2. Place the cylinders on the horizontal rod such that the axes of the cylinders are 
along the horizontal rod (as shown in Figure 4 below).  Make sure the 
thumbscrew on each cylinder is tightened.  The center of mass of each cylinder 
must be the same distance (r) from the axis of rotation (i.e. r1 = r2 in Figure 3a).  
Estimate the uncertainty in r called δr.  This should include both the uncertainty in 
reading your ruler and the uncertainty in locating the cylinder’s center of mass. 

 

 
Figure 4 

3. With the air supply on, attach the hanging mass (M) to one end of a string and 
wind the other end around the central pulley.  The string should also pass over the 
side pulley such that the hanging mass is just below the side pulley.  Hold the 
hanging mass stationary and measure its elevation (y) using the floor as your 
reference level.  Record this elevation in your spreadsheet and assign an 
appropriate uncertainty to this measurement.  Then release the hanging mass and 
simultaneously start the desktop timer.  When the mass hits the floor, stop the 
timer.  For the uncertainty in this time (δt), use the standard deviation of a 
measurement (denoted by s) from your time measurements in the previous 
experiment.  We are assuming your ability to stop and start the timer has not 
changed appreciably in the past week or so.   

4. In the previous experiment we saw: 
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Calculate the linear acceleration of the falling mass (M) and use 
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5. Use equation (3) to calculate the tension in the string (T) and use 
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6. Use equation (2) and the value you obtained for the radius of the central pulley R 
in the displacement part of the previous experiment to calculate the angular 

acceleration of the rotating apparatus.  In addition, use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

R
R

a
a δδαδα to 

calculate its uncertainty. 
7. Use equation (4) to calculate the unbalanced torque on the rotating apparatus and 
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equation the Greek letter τ (tau) is the torque and T is the tension in the string.) 
 
 

8. Use equation (1) to calculate the moment of inertia of the rotating apparatus; 
 

The uncertainty in moment of inertia is given by:   
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Calculate in r2 and its uncertainty, δ(r2). 
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9. Repeat steps 2 through 8 for two additional (non-zero) values of r.    
 

 
10. We would like to place the two cylinders at r = 0.  To do this, we will use the 

vertical bar on the support (see Figure 5).  When you place the cylinders on the 
vertical bar, make sure they are oriented the same way as in your previous trials, 
i.e. with the axes of the two cylinders perpendicular to the vertical bar.  As before, 
make sure to tighten the thumbscrews on the cylinder.  Follow the procedure in 
steps 3 through 8 to calculate the moment of inertia of the body with the two 
cylinders at r = 0.  Include this data in your data table.  

 
Figure 5 



 
Transfer your data into Kaleidagraph and make a plot of I vs. r2.  Your data points should 
have both horizontal and vertical error bars.  Also, fit your data with a best fit line, 
display its equation with the uncertainties in the slope and intercept. 
 
When the two cylinders are placed on the axis of rotation, the measured moment of 
inertia I0 is the moment of inertia of the rotating apparatus alone plus the moment of 
inertia of each of the two cylinders about an axis through their own centers of mass. 
 

0II =      (5) 
 

If the two masses are now each placed a distance r from the axis of rotation then equation 
5 becomes: 
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If you compare equation 6 to the form of an equation for a straight line:  
  

y = mx + b 
 

You can see that a plot of I vs. r2 should be a straight line.  The slope of this line is the 
sum of the masses (m1 + m2) and the intercept is I0. 
 
 
QUESTIONS 
 

1) The moment of inertia of a body depends not only on its mass, but also on how 
the mass is distributed.  Do your data support this?  Why or why not?   

2) In your plot of I vs. r2, why did you use r2 and not r in the plot?  What are the 
units of the slope of I vs. r2?  

3) Discuss the consistency of the slope of your I vs. r2 with the value you measured 
for m1+m2.  

 


