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Quantum States 
 
The physical state of a quantum-mechanical system is represented by a vector in a Hilbert 
space, sometimes called the “state vector.”  In Dirac notation, we represent the state 
vector by the “ket” Ψ . 
 
We can represent the state vector by its components using any complete set of 
orthonormal basis states, the same way we do with ordinary vectors.  If the basis set is 
discrete, we write 
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where the vector “components” cn can be found from taking the inner product of Eq. (1) 
with the mth “bra” state:  
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This result lets us re-write the original sum as:  

  ∑
∞

=

Ψ=Ψ
1n

nn .         (3) 

Removing the ket from both sides of the equation gives us the completeness relation, 
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If the basis is continuous, the sum is replaced by an integral:  
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Again, the coefficients c(q) are found from the inner product: 
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where the Kronecker delta of Eq. (2) has been replaced by the Dirac delta function. 
   
Two examples of continuous basis states are the eigenstates of the position operator X, 
defined by xxxX =ˆ , and the eigenstates of the momentum operator P, defined by 

pppP =ˆ .  The relations equivalent to Eq. (3) are: 
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For these two basis sets, the coefficients have special names.  The first is the 
wavefunction: 
  ( ) Ψ≡Ψ xtx,        (9) 
while the second is its Fourier transform, which Griffiths calls: 
  ( ) Ψ≡Φ ptp,         (10) 
where I have included the time-dependence explicitly. 
 
To take the inner product between any two arbitrary quantum states, we need to know 
their coefficients in some basis.  For a discrete basis, the result is 
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If we work in a continuous basis, the sum becomes an integral.  Let’s use the position 
eigenstate basis.  Then the result is: 
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The result on the far right-hand side is the way you first learned to take the inner product 
of two wavefunctions. 
 
 
Physical Observables 
 
Physical observables are represented by Hermitian operators, which have a number of 
important properties: 
 
 i) their eigenvalues are real 
 ii) they have a complete set of eigenstates 
 iii) eigenstates with different eigenvalues are orthogonal 

iv) eigenstates with the same eigenvalue can be made orthogonal by using the 
Gram-Schmidt procedure 

 
There is one catch in infinite-dimensional vector spaces.  When the spectrum is 
continuous, the eigenstates are not normalizable – i.e. they are not in our Hilbert space.  
Fortunately that doesn’t matter, because we can still use them as basis vectors in the ways 
described above. 
 
If we measure any physical observable, the measurement yields one of the eigenvalues of 
the corresponding operator.  Let’s call the operator Â  and define the eigenstates and 
eigenvalues by  
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If the eigenvalue spectrum is discrete, the probability to obtain the nth eigenvalue as a 
result of the measurement is  
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If the eigenvalue is degenerate, i.e. there are several states with the same eigenvalue, then 
the probability to obtain that eigenvalue in a measurement is 
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where the eigenstates j
na  all share the same eigenvalue αn, and gn is the number of 

those states.  
 
If the spectrum is continuous, the probability to obtain a result in the interval [ ] is  ba qq ,
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When we complete a measurement corresponding to the operator  and obtain the nÂ th 
eigenvalue of Â  as our result, then the measurement causes the quantum system to 
“collapse” into the corresponding eigenstate of .  Repeated measurements of  will 
produce the same result as the preceding measurement.  If we then measure a second 
observable represented by another Hermitian operator 

Â Â

B̂  with [ ] 0ˆ,ˆ =BA , then the 
measurement of B̂  does not change further measurements of , because the eigenstates 
of  

Â
B̂  are also eigenstates of .  If, on the other hand, Â [ ] 0ˆ,ˆ ≠BA , then the measurement 

of B̂ will disturb the system and will change the result of a further measurement of Â .  In 
this case  and Â B̂  are said to represent “incompatible observables.”   
 
If our Hilbert space has a finite number of dimensions N, it is convenient to choose a 
basis and represent quantum states by column vectors whose entries are the vector 
components in that basis.  Operators are represented by matrices, with matrix elements 
defined by nAmAmn

ˆˆ = .  For example, the ket Ψ  in a 3-dimensional Hilbert space 

and the operator  acting on that space would be represented by: Â
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Where the basis states are 1 , 2 , and 3 .  The bra associated with Ψ  is represented 
by the row vector: 

( 321 ΨΨΨ→Ψ )      (18) 
Notice that the elements of the bra are the complex conjugates of the elements of the ket. 
 
You find the eigenvectors and eigenvalues of Â  using the matrix rules you know well; 
let’s label them the usual way: nnn aaA α=ˆ .   All the rules states above follow: If your 

system is in the state Ψ , then a measurement of  will then produce the result Â nα  with 



probability 
2

Ψna .  The average (expectation) value of  can be calculated two ways 
(the first is easier to calculate, but the second contains more information):  
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The Hamiltonian 
 
The Hamiltonian Ĥ  is a special operator.  It not only represents the energy of the system, 
but it determines the time evolution of the quantum states.  Let’s represent the 
eigenvectors and eigenvalues of Ĥ by  

nEnH n=ˆ          (20) 
If the energy spectrum is discrete, we first write the initial quantum state as:  
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where 
  ( )0=Ψ= tncn         (22) 
Then the state for all future times has the following time dependence: 
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Written in terms of wavefunctions, the previous expressions become: 
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where  
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