Physics 472 – Spring 2008

Homework #3, due Friday, February 1

- 1. Griffiths problem 4.34. We did this in class, but it's a good warm-up for the later problems.
- 2. a) Consider an electron in a hydrogen atom state with l=1. The quantum number *j* that represents the total electron angular momentum $\vec{J} = \vec{L} + \vec{S}$ can take the values j=3/2 or j=1/2. In class we showed how to use the lowering operator to express the eigenstates of J^2 and J_z , labeled $|j, m_j\rangle$, in terms of linear combinations of the states $|l, m_i\rangle \otimes |s, m_s\rangle$. Follow the same procedure here to construct all four states of the j=3/2 ladder and both states of the j=1/2 ladder. Check your results using the Clebsch-Gordan coefficients in Table 4.8.
- b) Do Griffiths problem 4.55, parts (e) and (f). Note that you have to invert the answers you got to part (a), i.e. you need to express the states $|l,m_l\rangle \otimes |s,m_s\rangle$ in terms of the states $|j,m_j\rangle$.
- 3. a) Consider an electron in a state with arbitrary orbital angular momentum *l*. Follow the same procedure you used in the previous problem to construct the eigenstates of J^2 and J_z , $|j,m_j\rangle$, as linear combinations of the states $|l,m_l\rangle \otimes |s,m_s\rangle$. Do this only for the top two states of the highest j ladder and the top state of the next j ladder.

b) Do Griffiths problem 4.36. For part (a) you may use Table 4.8. For part (b), use the results you derived in problem 2 above.

4. Define the total angular momentum as $\vec{J} = \vec{L} + \vec{S}$. Using only the canonical commutation relations for \vec{L} and \vec{S} and the fact that $[\vec{L}, \vec{S}] = 0$, show that the spin-orbit interaction commutes with the total angular momentum: $[\vec{L} \cdot \vec{S}, \vec{J}] = 0$. Do this in the following two ways:

a) First, show that $\vec{L} \cdot \vec{S}$ commutes with one component of \vec{J} , i.e. show that $[\vec{L} \cdot \vec{S}, J_z] = 0$. It follows by rotational symmetry that $\vec{L} \cdot \vec{S}$ commutes with the other two components of \vec{J} .

b) Second, write $\vec{L} \cdot \vec{S} = \frac{1}{2} (J^2 - L^2 - S^2)$ and show that $[L^2, \vec{J}] = [S^2, \vec{J}] = [J^2, \vec{J}] = 0$.

It is because $[\vec{L} \cdot \vec{S}, \vec{J}] = 0$ that we can diagonalize the spin-orbit Hamiltonian using eigenstates of J^2 and J_z .