
Physics 472 – Spring 2008 
 

Homework #5, due Friday, February 15 
(Point values are in parentheses.) 

 
 
1.  [5] Griffiths problem 6.1 
 
 
2.  [4] Griffiths problem 6.2.  Griffiths wants you to use the Virial Theorem (problem 3.31) to do 

part (b).  An alternative is to express the  operator in terms of  and , as we did in class. x̂ â +â
 
 

3. [5] Griffiths problem 6.4.  
 
 
4.  [6] Two neutrons (s = ½) are confined inside a spherical cavity of radius a.  Assume that we have 

solved the single-particle problem, and we know the correct radial wavefunctions ( )rRnl , which 
we label by the quantum number n and the orbital angular momentum l.  Since the cavity is 
spherically symmetric, L

r
 is conserved, and we can write single-particle wavefunctions as 

   ( ) ( ) ( ) ( )sYrRr m
lnlnlms χφθφθ ,,, =Ψ  

 (If you want to see what the  look like, see Griffiths Section 4.1.3, Example 4.1.)  In Dirac 
notation, the single particle eigenstates can be written as: 

( )rRnl

   slsl msmllnmsmln ,,,,,,, ⊗⊗≡  
 (Writing the s is redundant, because we know s = ½, but I’m being precise.)  If we ignore the 

weak interaction between the neutrons, then the two-particle states look something like this: 
   )2(

22222
)1(

11111 ,,,,,,,, slsl msmlnmsmln ⊗=Ψ       (1) 
   
 a) The problem is, the state written above is not an eigenstate of the exchange operator.  

Assuming that  or , write down a properly antisymmetrized version of (1). 21 nn ≠ 21 ll ≠
  
 b) Eigenstates of exchange are more easily written down as tensor products of a two-particle 

spatial state with a two-particle spin state: 
   2211221121 ,,,,,,,, ssll msmsmlmlnn ⊗=Ψ       (2) 
 But even this isn’t the most convenient basis set.  We’d be better off using eigenstates of the total 

spin 21 SSS
rrr

+= .  So we’ll use the following basis states: 
   sll msssmlmlnn ,,,,,,,, 21221121 ⊗=Ψ        (3) 
 Again, the state written above is not an eigenstate of the exchange operator.  Assuming that 

 or  or , write down all four properly antisymmetrized versions of (3). 21 nn ≠ 21 ll ≠ 21 ll mm ≠
 
 c) If , , and , then the states you wrote down in part (b) are not right (three 

of them are zero).  Write down the only properly antisymmetrized version of (3) for this special 
case.   

21 nn = 21 ll = 21 ll mm =



 
d) When  and , it may be more convenient to change bases once again, and use 
eigenstates of the total orbital angular momentum 

21 nn = 21 ll =

21 LLL
rrr

+= .  In that case the states are: 
   sl msssmlllnn ,,,,,,,, 212121 ⊗=Ψ        (4) 
 For the case , , write down one properly antisymmetrized state for each 

possible value of l.  
321 == nn 121 == ll

 
 e) Now consider two neutrons in free space.  From classical mechanics, you know that we can 

specify their motion using the center-of-mass coordinate ( )212
1 rrR rrr

+=  and the relative 
coordinate .  (To remind yourself how this works, look at Griffiths problem 5.1).  For 
this problem, we’ll assume that the center-of-mass momentum is zero, so we’ll ignore 

21 rrr rrr
−=

R
r

 and P
r

.   
We could thus write the wavefunction for the two-neutron system in the following form: 

( ) ( ) ( ) ( )21 ,,,,
21

ssYrr m
lnlsnlms χφθφθ Φ=Ψ .       

 where again the radial wavefunction depends both on the quantum number n and the orbital 
angular momentum l.  Instead, let’s use eigenstates of total spin  and , where 2S zS 21 SSS

rrr
+= .  

In Dirac notation, a complete basis set of two-neutron quantum states is thus: 
    slsl msmllnmsmln ,,,,,,, ⊗⊗≡  
 
 When the spatial state is written in terms of the relative coordinate rr , spatial exchange 

corresponds to the parity transformation, rr rr
−→ .  In terms of spherical polar coordinates, that 

corresponds to πφφθπθ +→−→→ ,,rr .  If you look at the spherical harmonics in Table 
4.3, you’ll see that they have even parity if l is even, and odd parity if l is odd.  In operator 
notation, that means ( ) l

l
l mlmlP ,1,ˆ −= , where P̂  is the parity operator. 

 
 For each allowed value of s, what are the allowed values of l (up to l=4)?  Write down all allowed 

combinations of s, l, and j, using the archaic spectroscopic notation from atomic physics, . J
S L12 +

 
  


