
Physics 472 – Spring 2008 
 

Homework #7, due Friday, March 14 
(Point values are in parentheses.) 

 
1. [7] In Physics 471, we solved the isotropic 2-dimensional harmonic oscillator problem by writing 

the Hamiltonian as a sum of x and y Hamiltonians:  
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 with [ ] 0ˆ,ˆ 00 =yx HH .  We then found simultaneous eigenstates of  and , which obey 0ˆ
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 a) Consider the perturbation .  Calculate the first and second order energy shifts 

of the ground state.  In class, we used 
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 To evaluate the matrix elements of H ′ˆ in the yxnn  tensor product states, use: 

   yyxxyxyx nynnxnnnxynn '''' =  
 
 b) Now use degenerate P.T. to calculate the first-order energy shifts of the first excited states, as 

well as the “correct” linear combinations of those two states that diagonalize H ′ˆ . 
 
 c) The full Hamiltonian, , is exactly solvable if you make the coordinate 

transformation 
HHH ′+= ˆˆˆ 0 λ

( ) 2/yxu += , ( ) 2/yxv −= .  Express Ĥ in terms of u, v, and their conjugate 
momenta Pu, and Pv.  You should find that the harmonic oscillator in the “u” direction has a 
slightly larger frequency than before, while in the “v” direction the frequency is slightly lower.  
Calculate the exact energies of the new basis states vu nn , .  For the ground state, expand the 
energy to second order in λ .  For the next two states, expand the energies to first order in λ .  
Compare your results with those you obtained in parts (a) and (b).   

 
 
2.  [7] Consider an electron in a 3-dimensional harmonic oscillator potential, in the presence of a 

uniform magnetic field .  The full Hamiltonian for the system is: kBB ext
ˆ=

r
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 This problem is exactly solvable, but we’ll use the machinery of perturbation theory to get 
started.  Treat the first two terms of H as 0H , and the Zeeman term as H ′ .  The eigenstates of 



0H  satisfy: ( ) szyxzyxszyx mnnnnnnmnnnH ,,,,,,ˆ
2
30 ωh+++= , where 2

1±=sm , and 

szyxsszyxz mnnnmmnnnS ,,,,,, h= .  (I am putting the space and spin quantum numbers 
together inside the same ket to avoid using the cumbersome tensor product notation.)  On 
Homework Set 10 of Physics 471, you showed that we can write  in terms of the standard 
harmonic oscillator raising and lowering operators: 

zL̂
( )yxyxz aaaaiL ++ −= hˆ . 

 
 a) The ground state of 0H is 2-fold degenerate, due to spin.  But since the two sm,0,0,0  states 

are already eigenstates of H ′ , you can use standard first-order perturbation theory to calculate 
the energy shifts due to the magnetic field.  Express your answers in terms of extBBμ  and . sm

 
 b) The first excited state of 0H is six-fold degenerate (3 spatial states ×  2 spin states).  Calculate 

the linear combinations of states that diagonalize H ′ .  To help you keep track of what you are 
doing, here are some suggestions.  First, since all your states are eigenstates of Sz, leave spin out 
of the problem until the end; then you only have to diagonalize a 3×3 matrix rather than a 6×6 
matrix.  Since the original basis states szyx mnnn ,,, are not eigenstates of , you need to find 

linear combinations of them that are.  Label the new states this way: 
zL̂

sl mmln, ,, , where 
.  You don’t need to know l  to do this problem – you just need .  But you can 

probably guess what l  is once you know what  is for the three states.  Finally, when you have 
found the states that diagonalize 

zyx nnnn ++= lm

lm
H ′ , calculate the Zeeman energy shifts of those states.  How 

many distinct energies are there?  Make a plot of energy vs. extBBμ  for all the states. 
 
 c) The second excited state of 0H  is twelve-fold degenerate (6 spatial states ×  2 spin states).  

Forget about spin altogether so you don’t get lost.  Construct the 6×6 matrix representation of 
.  If you choose the order of your 6 states judiciously, your 6zL̂ ×6 matrix should break up into a 

2×2 block, a 3×3 block, and a 1×1 block.  Calculate the eigenvalues of  and their 
degeneracies.  Guess what the values of  are for this six-dimensional subspace.  Don’t bother to 
calculate the 12 Zeeman energies – I know you could do it if you had to!  
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3.  [6] We did Griffiths problem 6.36 in class on February 13.  We used two symmetries to figure 

out which matrix elements of the form ll mlnzmln ,,',',  are zero.  The first was rotational 

symmetry: [ ] 0ˆ,ˆ =zLz  implies ( ) 0,,',',' =− llll mlnzmlnmm .  The second was parity:  zz ˆˆˆˆ −=ΠΠ  

implies ( ) llll
ll mlnzmlnmlnzmln ,,',',,,',',1 ' −=− + . 

 
 Use these same symmetries to do Griffiths problem 6.37.  First, show which elements of the 9×9 

matrix are zero.  Then calculate the first non-zero matrix element, 0,1,30,0,3 z , using Tables 
4.3 and 4.7 in Griffiths.  Use Mathematica to do the radial integration.  You can take the values 
of the other nonzero matrix elements from Griffiths.  Construct the 9×9 matrix representation of 

.  If you choose the order of the 9 states carefully, then the matrix should break into a 3ẑ ×3 
block, two 2×2 blocks, and two trivial 1×1 blocks.  Calculate the eigenvalues and their 
degeneracies.  Don’t forget to multiply the eigenvalues by to get the energies. exteE


