Physics 472: Summary of Angular Momentum and Spin

Angular Momentum

The two types of angular momentum, orbital angular momentum \vec{L} and intrinsic spin \vec{S}, behave nearly the same way. We'll refer to all types of angular momentum as \vec{J}. All properties can be derived from the canonical commutation relations:

$$
\left\lfloor J_{x}, J_{y}\right\rfloor=i \hbar J_{z} \text { and cyclic permutations. }
$$

Since $\left[J^{2}, \vec{J}\right]=0$, we can find simultaneous eigenstates of $\left[J^{2}, \vec{J}\right]=0$ and any component of \vec{J}. It is customary to choose the z-component. Then we label our eigenstates by the quantum numbers j and m , where

$$
\begin{aligned}
& J^{2}|j, m\rangle=\hbar^{2} j(j+1)|j, m\rangle \\
& J_{z}|j, m\rangle=\hbar m|j, m\rangle
\end{aligned}
$$

where $\mathrm{j}=0,1 / 2,1,3 / 2,2 \ldots$ and $\mathrm{m}=-\mathrm{j},-\mathrm{j}+1,-\mathrm{j}+2, \ldots, j-1, \mathrm{j}$
The only difference between \vec{L} and \vec{S} is that l takes on only integer values.
The raising and lowering operators for angular momentum are defined as:

$$
J_{+}=J_{x}+i J_{y} \quad J_{-}=J_{x}-i J_{y}
$$

When they act on a state $|j, m\rangle$, they increase or decrease by 1 the value of m without changing the value of j :

$$
\begin{aligned}
J_{+}|j, m\rangle & =\hbar \sqrt{j(j+1)-m(m+1)}|j, m+1\rangle \\
J_{-}|j, m\rangle & =\hbar \sqrt{j(j+1)-m(m-1)}|j, m-1\rangle
\end{aligned}
$$

Addition of Angular Momentum

If $\vec{J}=\vec{J}_{1}+\vec{J}_{2}$, then the eigenstates of J^{2} and J_{z} can be expressed as linear combinations of the tensor product eigenstates of $J_{1}^{2}, J_{1 z}$ and $J_{2}^{2}, J_{2 z}$, using the Clebsch-Gordan coefficients.

$$
|j, m\rangle=\sum_{m_{1}+m_{2}=m} C_{m_{1} m_{2} m}^{j_{j} j_{2} j}\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle
$$

where $j=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right),\left(j_{1}+j_{2}-2\right), \ldots,\left|j_{1}-j_{2}\right|$. You can derive the coefficients by starting at the top state of the top j ladder and applying the lowering operator, but you should know how to read the table of Clebsch-Gordan coefficients.

Spin and Dirac Notation

Because Griffiths uses the spinor notation rather than Dirac notation, this section is intended to clarify the relationship between the two.

If we have a particle with spin s, then the dimension of the Hilbert space associated with the spin degree of freedom is $(2 s+1)$. We can work in any orthonormal basis, but we usually choose as our basis states the eigenstates of S^{2} and S_{z}, labeled $\left|s, m_{s}\right\rangle$. The eigenvalue equations are:

$$
\begin{aligned}
& S^{2}\left|s, m_{s}\right\rangle=\hbar^{2} s(s+1)\left|s, m_{s}\right\rangle \\
& S_{z}\left|s, m_{s}\right\rangle=\hbar m_{s}\left|s, m_{s}\right\rangle
\end{aligned}
$$

If we are dealing with a single particle, then we sometimes omit the " s " in the label, and simply write $\left|m_{s}\right\rangle$. If $s=1 / 2$, we usually substitute $|\uparrow\rangle$ and $|\downarrow\rangle$ for $\left|\frac{1}{2}\right\rangle$ and $\left|-\frac{1}{2}\right\rangle$.

A general spin state $|\chi\rangle$ can be written as a linear superposition of the basis states:

$$
|\chi\rangle=\sum_{m=-s}^{s} c_{m}|m\rangle \quad \text { where } c_{m}=\langle m \mid \chi\rangle
$$

So we have

$$
|\chi\rangle=\sum_{m=-s}^{s}|m\rangle\langle m \mid \chi\rangle
$$

If we remove the ket $|\chi\rangle$ from both sides, this is just the completeness relation.

Because the Hilbert space is finite, it is sometimes convenient to represent states by column vectors, and operators by matrices. For $s=1 / 2,1$, and $3 / 2$, we get:

$$
|\chi\rangle \rightarrow\binom{\langle\uparrow \mid \chi\rangle}{\langle\downarrow \mid \chi\rangle} \quad|\chi\rangle \rightarrow\left(\begin{array}{c}
\langle 1 \mid \chi\rangle \\
\langle 0 \mid \chi\rangle \\
\langle-1 \mid \chi\rangle
\end{array}\right) \quad|\chi\rangle \rightarrow\left(\begin{array}{c}
\langle 3 / 2 \mid \chi\rangle \\
\langle 1 / 2 \mid \chi\rangle \\
\langle-1 / 2 \mid \chi\rangle \\
\langle-3 / 2 \mid \chi\rangle
\end{array}\right)
$$

For $s=1 / 2$, Griffiths uses the spinor notation:

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-} \text {, where } \chi_{+}=\binom{1}{0} \text { and } \chi_{-}=\binom{0}{1}
$$

You can derive the matrix forms of the spin operators from your knowledge of how the raising and lowering operators act on the spin eigenstates. For spin-1/2, it is customary to express the spin operator matrices in terms of the Pauli spin matrices:

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma} \text { where } \quad \sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

