
Physics 472:  A Brief Introduction to Tensor Product States 
 
 
1. Consider two quantum systems, labeled 1 and 2.  Let S(1) by the Hilbert space of states 
for system 1, of dimension N1.  Let S(2) by the Hilbert space of states for system 2, of 
dimension N2.  We can then describe both quantum systems together by using the tensor 
product space S = S(1) ⊗ S(2), which has dimension N = N1 x N2.   
 
2. Let )1(n  be a complete orthonormal basis for S(1), and )2(n  be the same for S(2).  
Then we can write any state of the combined system as a linear combination of tensor 
products of the basis states:  
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We sometimes abbreviate tensor product states as nmnmnm ,)2()1()2()1( ==⊗ . 
The simplest kinds of states are called “factorizable,” and can be written as a single 
tensor product of a state in 1 and a state in 2:  
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Factorizable states are not the most general kind of state of the combined system.  (Notice 
that the most general state can have as many as N1 x N2 independent coefficients cmn, 
whereas a factorizable state is determined by the N1 + N2 coefficients cm and dn.) 
 
3. The tensor product is easy to understand when systems 1 and 2 represent different 
quantum systems.  What is less obvious, but also true, is that they may represent different 
degrees of freedom of a single quantum system.  Examples include: 
 i) the x and y coordinates of a two-dimensional harmonic oscillator 
 ii) the spatial and spin degrees of freedom of an electron 
 iii) the radial and angular degrees of freedom of an electron 
 
4. Operators defined in S(1) can be extended to S in the obvious way: the operator acts 
only on the first part of any tensor product state.  (If A is the operator in S(1), then define 
the operator in S as A(1) ⊗I(2).)  Similarly, operators defined in S(2) act on the second part 
of the tensor product state.  A familiar example is the angular momentum lowering 
operator J- = J-

(1) + J-
(2), which we used to construct the eigenstates of J2 and Jz as linear 

superpositions of eigenstates of (J(1))2, Jz
(1), (J(2))2, and Jz

(2).  (In this simplest example we 
are starting at the top of the highest j ladder, with j=j1+j2, m=j, m1=j1, and m2=j2.)  
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The result is: 
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