Physics 472: A Brief Introduction to Tensor Product States

1. Consider two quantum systems, labeled 1 and 2 . Let $S^{(1)}$ by the Hilbert space of states for system 1, of dimension N_{1}. Let $\mathrm{S}^{(2)}$ by the Hilbert space of states for system 2, of dimension N_{2}. We can then describe both quantum systems together by using the tensor product space $S=S^{(1)} \otimes S^{(2)}$, which has dimension $N=N_{1} \times N_{2}$.
2. Let $|n\rangle^{(1)}$ be a complete orthonormal basis for $S^{(1)}$, and $|n\rangle^{(2)}$ be the same for $S^{(2)}$. Then we can write any state of the combined system as a linear combination of tensor products of the basis states:

$$
|\Psi\rangle=\sum_{m=1}^{N_{1}} \sum_{n=1}^{N_{2}} c_{m n}|m\rangle^{(1)} \otimes|n\rangle^{(2)}
$$

We sometimes abbreviate tensor product states as $|m\rangle^{(1)} \otimes|n\rangle^{(2)}=|m\rangle^{(1)}|n\rangle^{(2)}=|m, n\rangle$. The simplest kinds of states are called "factorizable," and can be written as a single tensor product of a state in 1 and a state in 2:

$$
|\Psi\rangle=|\varphi\rangle^{(1)} \otimes|\chi\rangle^{(2)}=\left(\sum_{m=1}^{N_{1}} c_{m}|m\rangle^{(1)}\right) \otimes\left(\sum_{n=1}^{N_{2}} d_{n}|n\rangle^{(2)}\right)=\sum_{m, n} c_{m} d_{n}|m\rangle^{(1)} \otimes|n\rangle^{(2)}
$$

Factorizable states are not the most general kind of state of the combined system. (Notice that the most general state can have as many as $\mathrm{N}_{1} \times \mathrm{N}_{2}$ independent coefficients C_{mn}, whereas a factorizable state is determined by the $N_{1}+N_{2}$ coefficients c_{m} and d_{n}.)
3. The tensor product is easy to understand when systems 1 and 2 represent different quantum systems. What is less obvious, but also true, is that they may represent different degrees of freedom of a single quantum system. Examples include:
i) the x and y coordinates of a two-dimensional harmonic oscillator
ii) the spatial and spin degrees of freedom of an electron
iii) the radial and angular degrees of freedom of an electron
4. Operators defined in $S^{(1)}$ can be extended to S in the obvious way: the operator acts only on the first part of any tensor product state. (If A is the operator in $S^{(1)}$, then define the operator in S as $\mathrm{A}^{(1)} \otimes \mathrm{I}^{(2)}$.) Similarly, operators defined in $\mathrm{S}^{(2)}$ act on the second part of the tensor product state. A familiar example is the angular momentum lowering operator $\mathrm{J}_{-}=\mathrm{J}_{-}^{(1)}+\mathrm{J}_{-}^{(2)}$, which we used to construct the eigenstates of J^{2} and J_{Z} as linear superpositions of eigenstates of $\left(\mathrm{J}^{(1)}\right)^{2}, \mathrm{~J}_{\mathrm{z}}{ }^{(1)},\left(\mathrm{J}^{(2)}\right)^{2}$, and $\mathrm{J}_{\mathrm{z}}{ }^{(2)}$. (In this simplest example we are starting at the top of the highest j ladder, with $\mathrm{j}=\mathrm{j}_{1}+\mathrm{j}_{2}, \mathrm{~m}=\mathrm{j}, \mathrm{m}_{1}=\mathrm{j}_{1}$, and $\mathrm{m}_{2}=\mathrm{j}_{2}$.)

$$
J_{-}|j, m\rangle=\left(J_{-}^{(1)}+J_{-}^{(2)}\right)\left(\left|j_{1}, m_{1}\right\rangle \otimes\left|j_{2}, m_{2}\right\rangle\right)=\left(J_{-}^{(1)}\left|j_{1}, m_{1}\right\rangle\right) \otimes\left|j_{2}, m_{2}\right\rangle+\left|j_{1}, m_{1}\right\rangle \otimes\left(J_{-}^{(2)}\left|j_{2}, m_{2}\right\rangle\right)
$$

The result is:
$\hbar \sqrt{j(j+1)-m(m-1)}|j, m-1\rangle=\begin{gathered}\hbar \sqrt{j_{1}\left(j_{1}+1\right)-m_{1}\left(m_{1}-1\right)}\left|j_{1}, m_{1}-1\right\rangle \otimes\left|j_{2}, m_{2}\right\rangle \\ +\hbar \sqrt{j_{2}\left(j_{2}+1\right)-m_{2}\left(m_{2}-1\right)}\left|j_{1}, m_{1}\right\rangle \otimes\left|j_{2}, m_{2}-1\right\rangle\end{gathered}$

