Kepler's Laws

- Hwk1: max is 28
- If you want a question regraded, write a note on the front \& give me the paper.
- Figure added to Homework 2
- See link on syllabus
- Read pages in Galileo’s Starry Messenger for Mon
- See link on syllabus
- How \& when did Galileo know that he had discovered moons of Jupiter?
- The discovery of the laws of motion, the first science.
- De Revolutionibus Orbium Coelestium, Copernicus, 1543
- Astronomia Nova, Kepler, 1609
- Philosophiae Naturalis Principia Mathematica, Newton, 1687
- How Kepler figured out the path of Mars from Tyco's observations.
- Kepler's three laws.

Kepler at 39, Sternwarte Kremsmünster http://members.nextra.at/stewar/

Copernicus	$1473-1543$
Columbus sails	1492
Tycho Brahe	$1546-1601$
Shakespeare	$1564-1616$
Johannes Kepler	$1571-1630$
Jamestown	1607
King James Bible	1611
Harvard College	1636
Isaac Newton	$1642-1727$

Determining one point on Mars' orbit

- Observations
- On 21 March 1978, the right ascension of Mars is 7 hr 46 min (116.5° from the sun on the vernal equinox).
- On 1 Jan 1980, Mars is at 11 hr $06 m i n\left(166.5^{\circ}\right)$.
- On 15 Jan 1980, Mars is at 11hr $12 \mathrm{~min}\left(168.0^{\circ}\right)$.
- On 6 February 1980 (one Martian year later), Mars is at 11 hr 02 min (165.5ㅇ).
- On 1 Mar 1980, Mars is at 10 hr 30min (157.5 ${ }^{\circ}$).

1. Which point is on Mars' orbit? B

Kepler Solves Mars Orbit

- Kepler’s Astronomia Nova, 1609, in Sleepwalkers, by A. Koestler.
- Kepler describes the orbit: "The conclusion is simply that the planet's path is not a circle-it curves inward on both sides and outward again at opposite ends. Such a curve is called an oval. The orbit is not a circle, but an oval figure." - Ch. 44
- "What happened to me confirms the old proverb: a bitch in a hurry produces blind pups... But simply I could not think of any other means of imposing an oval path on the planets. When these
 ideas fell upon me, I had already celebrated my new triumph over Mars without being disturbed by the question whether the figures tally or not." -Ch. 45

Kepler discovers Kepler’s First Law of Planetary Motion

- "... I was wondering why and how a sickle of just that thickness (0.00429) came into being. While this thought was driving me around, while I was considering again and again... that my apparent triumph over Mars has been in vain, I stumbled entirely by chance on the secant of the angle $5^{\circ} 18$, which is the measure of the greatest optical elongation.
 When I realized that this secant equals 1.00429, I felt as if I had been awakened from a sleep..." -Ch. 45 (a year's work later)

Kepler's First Law of Planetary Motion 1605

- The path of a planet is an ellipse. Sun, at one focus
- Ellipse is figure for which D1+D2 does not change
- The sun is at one focus.
- Eccentricity = (dist between foci)/(major axis)

- Modern extension
- The path of an object controlled by the sun's gravity is an ellipse, parabola, or hyperbola.
- The sun is at one focus.

Kepler’s Second Law 1602

- The line joining the planet and the sun sweeps out equal areas in equal amounts of time
- Planet moves slowly when it is far from sun
- Planet moves rapidly when close to sun

Kepler2ndLaw

Third Law 1618

- The size and periods of the planetary orbits are related by

$$
\mathrm{P}^{2}=\mathrm{a}^{3}
$$

- where P is the period in years and
- a is the half of the major axis in astronomical units

1. A $10^{\text {th }}$ object (planet?) was found beyond the orbit of Pluto. __ has the shorter period.
A. Pluto
B. $10^{\text {th }}$ object
C. Not enough
information to answer
$3^{\text {rrd }}$ Law
http://web.cuug.ab.ca/~kmcclary/fastsolar.html

Questions concerning Kepler’s Laws

- K1: A planet's path is an ellipse with the sun at one focus.
- K2: A planet "sweeps" out the same area in an equal amount of time.
- K3: The planets' periods P and semi-major axes a are related by

$\mathrm{P}^{2}=\mathrm{a}^{3}$

- A planet, which has an almost circular orbit, and a comet, which has a highly elliptical orbit, have the same periods. Draw their orbits on a single picture.

1. Grading: sun's position
2. Grading: lengths of major axes.

Questions concerning Kepler’s Laws

- A planet's path is an ellipse with the sun at one focus.
- A planet "sweeps" out the same area in an equal amount of time.
- The planets' periods P and semimajor axes a are related by $\mathrm{P}^{2}=\mathrm{a}^{3}$
- A planet, which has an almost circular orbit, and a comet, which has a highly elliptical orbit, have the same periods. Draw their orbits on a single picture.

1. Grading: sun's position
A. Centered for comet
B. Offset for comet
2. Grading: lengths of major axes.
A. Same for both
B. Different
