Discovery of White Dwarfs—7 Oct

- Hertzsprung-Russell diagrams
- Magnitude, apparent & absolute
- Adams' discovery

Sirius A & B http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg

Luminosity and flux									
• L	• Luminosity = amount of energy per second (Watt) produced by the star $- L=R^2T^4$								
 Flux = energy per second received by a detector on earth (Watt/m²) F=L/D² 									
1. As viewed from Earth, which is the faintest star?									
A. B. C.	A. Sun U _{se} B. <u>Vega</u> C. Sirius								
2. As viewed from a distance of 10 pc from each star, which is the faintest star?									
Sun									
Star	Apparent	Flux		Absolute	Luminosity		Distance		
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]		
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10 ²⁶	1	5×10 ⁻⁶		
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8		
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7		

Apparent & Absolute Magnitude										
	• Apparent mag is a logarithmetic expression of flux									
	• If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.									
	- If the apparent mag <u>changes</u> by $+2.5$, the flux is fainter by a <u>factor</u> of 10.									
	1. The apparent magnitude of a star is $+2.5$. Its flux is									
	A. $2.7 \times 10^{-6} W/m^2$.									
	B. $2.7 \times 10^{-7} W/m^2$.									
	C. $2.7 \times 10^{-8} W/m^2$.									
	D. $2.7 \times 10^{-9} W/m^2$.									
	E. $2.7 \times 10^{-10} W/m^2$.									
	2. The apparent magnitude of a star is +5. Its flux is									
	Star	ar Apparent		ux	Absolute	Luminosity		Distance		
		mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]		
	Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10 ²⁶	1	5×10 ⁻⁶		
	Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8		
	Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7		

 Appendix Appendix Appendix	Appendix A by the second state of the secon	rent &	Abs metic expr ges by -2.5, 1 metic expre parent mag y -2.5 mag, t f a star is -2	olute ession of flu the flux is bri ession of lur if the star is 1 he luminosity 2. Its luminos	X ghter by a <u>fac</u> ninosity noved to a di v is brighter b sity is	itud <u>ctor</u> of 1 istance o by a <u>facto</u>	С 0. of 10 рс. or of 10.
Star	Apparent Flux		ux	Absolute	Luminosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10 ²⁶	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7

