White dwarfs & supernovae — Oct 19

Cygnus Loop Supernova 20,000 yr ago

- What causes pressure in white dwarfs?
- Where were the elements in the baby made?
 - Carbon was made and expelled by giants
 - Iron was made in massive stars and expelled by supernovae
 - Heavier elements were made in supernovae & in giants, where there are free neutrons. Nuclei capture neutrons.

- Observing
 - Wed & Thurs, Oct 21 & 22, 8:00-10:00pm.
 - Elevator cannot go up after 10:00pm.
 - Attend only if stars are visible. See angel at 6:00pm, if weather is ambiguous.
 - Quiz. You will be asked to locate a star using the Abrams Planetarium star chart. Quiz counts as one clicker assignment.
 - Go to the south end of the building (toward Wilson Rd.) & take the elevator up to the penthouse.

- Test 2 on Wed.
 - Through Adams' discover of a white dwarf (12 Oct)
 - Energy production in sun not included (12 Oct).
 - One 8 ¹/₂ x 11" cheat sheet.
- Open house nights at the observatory
 - Friday and Saturday, Oct. 23 and 24, 9-11pm, weather permitting.
 - Observatory:
 - Go south on Farm Lane to the end
 - Turn right. Observatory is 100 yards to the west.

Guest star of 1054

- Records of Sung Dynasty
 - In the first year of the period Chihho, ..., a guest star appeared severa degrees SE of Thien-kuan. After more than a year it gradually becam invisible.-p578.
- Gas expelled in 1054AD, still glowing
- Other SN
 - 1572 Tycho
 - 1604 Kepler

What is a supernova? Why sun becomes a white dwarf, not a supernova

• In future double-shell burning sun, hot enough to burn

 $3^{4}\text{He}\rightarrow^{12}\text{C}$

- When He exhausted, gravity wins, and core contracts.
- Temperature rises.
- Electrons are so tight that they become degenerate.
- New source of pressure to resist gravity.
- Temperature not hot enough to burn carbon.

Reaction	Min. Temp.
4 ¹ H → ⁴ He	10 ⁷ ° K
3 ⁴ He → ¹² C	2x10 ⁸
$^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$, Ne, Na, Mg	8x10 ⁸
Ne 🗲 O, Mg	1.5x10 ⁹
O ➔ Mg, S	2x10 ⁹
Si → Fe peak	3x10 ⁹

What is a supernova? Why massive star becomes a supernova

- Hot enough to burn ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O}$, etc
- When C exhausted, gravity wins, and core contracts.
- Temperature rises.
- Temperature hot enough to burn neon.
 - 20 Ne + 4 He \rightarrow 24 Mg
- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.

Reaction	Min. Temp.
4 ¹ H → ⁴ He	10 ⁷ ° K
3 ⁴ He → ¹² C	2x10 ⁸
$^{12}C + {}^{4}He \rightarrow {}^{16}O$, Ne, Na, Mg	8x10 ⁸
Ne → O, Mg	1.5x10 ⁹
O ➔ Mg, S	2x10 ⁹
Si →Fe peak	3x10 ⁹
	hydrogen fusion helium fusion
carbon fusion oxygen fusi	
	neon fusion magnesium fusior silicon fusion
inert iron core	

