White dwarfs & supernovae — Oct 19

- What causes pressure in white dwarfs?
- Where were the elements in the baby made?
 - Carbon was made and expelled by giants
 - Iron was made in massive stars and expelled by supernovae
 - Heavier elements were made in supernovae & in giants, where there are free neutrons. Nuclei capture neutrons.

Cygnus Loop
Supernova 20,000 yr ago

- Observing
 - Wed & Thurs, Oct 21 & 22, 8:00-10:00pm.
 - Elevator cannot go up after 10:00pm.
 - Attend only if stars are visible. See angel at 6:00pm, if weather is ambiguous.
 - Quiz. You will be asked to locate a star using the Abrams Planetarium star chart. Quiz counts as one clicker assignment.
 - Go to the south end of the building (toward Wilson Rd.) & take the elevator up to the penthouse.

- Test 2 on Wed.
 - Through Adams’ discover of a white dwarf (12 Oct)
 - Energy production in sun not included (12 Oct).
 - One 8 ½ x 11” cheat sheet.

- Open house nights at the observatory
 - Friday and Saturday, Oct. 23 and 24, 9-11pm, weather permitting.
 - Observatory:
 - Go south on Farm Lane to the end
 - Turn right. Observatory is 100 yards to the west.
Normal/degeneracy pressure
White dwarfs

- Pressure on the walls of the box is caused by the gas hitting the walls. Gas transfers momentum to the walls.
- Mental picture: Marbles hit the walls; wall pushes back.
- **Normal gas**
 \[P V = n k T \]
 \[m v^2 = k T \]

1. Pressure is greater at higher temperature because ____.
 I. more marbles are hitting the wall every second.
 II. the marbles are moving faster and each marble has more momentum.
 A. I only
 B. II only
 C. I & II

Pressure in a “degenerate gas”

- **Normal gas**
 \[P V = n k T \]
 - Pressure is greater at higher temperature because the marbles are moving faster. \(m v^2 = k T \)

- **Degenerate gas. If the gas is confined to a very small space, Newton’s 2nd law becomes invalid.**
 - New laws of motion, called quantum mechanics, apply.

- Heisenberg’s uncertainty principle. Suppose a particle is allowed to move within a region of length \(x \).
 \[m v x > h \]
 - momentum \(x > h \)
 - \(v \) is speed. \(h \) is Planck’s constant.
 - A particle must move if it is confined to a small space.
 - If you confine an electron to \(10^{-8} \)m, it moves at 70km/s.
1. Plot shows the speed of a normal gas made of electrons with a temperature of 1000K and a degenerate gas of electrons with a temperature of 0K.
 A. I is a NG. II is a DG.
 B. I is a DG. II is a NG.

Pressure in a “degenerate gas”

- **Normal gas**
 \[P V = n k T \]
 - Pressure is greater at higher temperature because the marbles are moving faster.

- **Degenerate gas. If the gas is confined to a very small space, Newton’s 2nd law becomes invalid.**
 - New laws of motion, called quantum mechanics, apply.
 - Heisenberg’s uncertainty principle. Suppose a particle is allowed to move within a region of length \(x \).
 \[m v x > h \]
 - momentum \(x > h \)
 - \(v \) is speed. \(h \) is Planck’s constant.
 - A particle must move if it is confined to a small space.
 - If you confine an electron to \(10^{-8} \)m, it moves at 70km/s.

- **Pressure of a degenerate gas**
 \[P V^{3/3} = \text{constant } n^{3/3} \]
 - constant = \(h^2/m \)
 - Pressure does not depend on temperature!!!
Other fusion reactions?

- Sun has one more trick after He is exhausted in core.
 - Burn He in a shell
- Sun is not massive enough to shrink further and get hotter
 - Core is supported by pressure of degenerate electrons.
 - Temperature does not rise to burn anything else.
- End of the road: planetary nebula & white dwarf core

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He $\rightarrow ^4$He</td>
<td>10 MK</td>
</tr>
<tr>
<td>3He $\rightarrow ^{12}$C</td>
<td>200 MK</td>
</tr>
<tr>
<td>12C + 4He $\rightarrow ^{16}$O, Ne, Na, Mg</td>
<td>800 MK</td>
</tr>
<tr>
<td>Ne \rightarrow O, Mg</td>
<td>1500 MK</td>
</tr>
<tr>
<td>O \rightarrow Mg, S</td>
<td>2000 MK</td>
</tr>
<tr>
<td>Si \rightarrow Fe peak</td>
<td>3000 MK</td>
</tr>
</tbody>
</table>

Supernova 1987A

- Exploded in Large Magellanic Cloud
 - LMC is small galaxy that orbits our own Milky Way Galaxy.

Pre-existing circumstellar ring lit up first by photons from SN, now by blast wave from SN.
Guest star of 1054

- Records of Sung Dynasty
 - In the first year of the period Chih-ho, ..., a guest star appeared several degrees SE of Thien-kuan. After more than a year it gradually became invisible.—p578.
- Gas expelled in 1054AD, still glowing
- Other SN
 - 1572 Tycho
 - 1604 Kepler

Supernova remnants

Crab
1,000 yrs old

Cygnus Loop
20,000 yrs old.
2500 LY away.

IC 443
8000 yrs old

We expect one supernova in Milky Way every 25-100 yrs.
Supernovae

• Explosion releases enormous energy
• Luminosity in photons temporarily exceeds that of whole galaxy full (100 billion) of stars.

What is a supernova? Why sun becomes a white dwarf, not a supernova

• In future double-shell burning sun, hot enough to burn
 \[3^4\text{He} \rightarrow \text{C}^12\]
• When He exhausted, gravity wins, and core contracts.
• Temperature rises.
• Electrons are so tight that they become degenerate.
• New source of pressure to resist gravity.
• Temperature not hot enough to burn carbon.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H} \rightarrow 4\text{He})</td>
<td>(10^7) K</td>
</tr>
<tr>
<td>(3 \times 4\text{He} \rightarrow 12\text{C})</td>
<td>(2 \times 10^8)</td>
</tr>
<tr>
<td>(12\text{C} + 4\text{He} \rightarrow 16\text{O}, \text{Ne}, \text{Na}, \text{Mg})</td>
<td>(8 \times 10^8)</td>
</tr>
<tr>
<td>(\text{Ne} \rightarrow \text{O}, \text{Mg})</td>
<td>(1.5 \times 10^9)</td>
</tr>
<tr>
<td>(\text{O} \rightarrow \text{Mg, S})</td>
<td>(2 \times 10^9)</td>
</tr>
<tr>
<td>(\text{Si} \rightarrow \text{Fe peak})</td>
<td>(3 \times 10^9)</td>
</tr>
</tbody>
</table>
What is a supernova? Why massive star becomes a supernova

- In future double-shell burning massive star, hot enough to burn $^{3}\text{He} \rightarrow ^{12}\text{C}$
- When He exhausted, gravity wins, and core contracts.
- Temperature rises by larger amount b/c gravity is stronger.
- Temperature hot enough to burn carbon. $^{4}\text{He} + ^{12}\text{C} \rightarrow ^{16}\text{O}$, etc

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{1}\text{H} \rightarrow ^{4}\text{He}$</td>
<td>10^7 K</td>
</tr>
<tr>
<td>$3^{4}\text{He} \rightarrow ^{12}\text{C}$</td>
<td>2×10^8</td>
</tr>
<tr>
<td>$^{12}\text{C} + ^{4}\text{He} \rightarrow ^{16}\text{O}, \text{Ne, Na, Mg}$</td>
<td>8×10^8</td>
</tr>
<tr>
<td>Ne \rightarrow O, Mg</td>
<td>1.5×10^9</td>
</tr>
<tr>
<td>O \rightarrow Mg, S</td>
<td>2×10^9</td>
</tr>
<tr>
<td>Si \rightarrow Fe peak</td>
<td>3×10^9</td>
</tr>
</tbody>
</table>

What is a supernova? Why massive star becomes a supernova

- Hot enough to burn $^{4}\text{He} + ^{12}\text{C} \rightarrow ^{16}\text{O}$, etc
- When C exhausted, gravity wins, and core contracts.
- Temperature rises.
- Temperature hot enough to burn neon. $^{20}\text{Ne} + ^{4}\text{He} \rightarrow ^{20}\text{Mg}$
- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{1}\text{H} \rightarrow ^{4}\text{He}$</td>
<td>10^7 K</td>
</tr>
<tr>
<td>$3^{4}\text{He} \rightarrow ^{12}\text{C}$</td>
<td>2×10^8</td>
</tr>
<tr>
<td>$^{12}\text{C} + ^{4}\text{He} \rightarrow ^{16}\text{O}, \text{Ne, Na, Mg}$</td>
<td>8×10^8</td>
</tr>
<tr>
<td>Ne \rightarrow O, Mg</td>
<td>1.5×10^9</td>
</tr>
<tr>
<td>O \rightarrow Mg, S</td>
<td>2×10^9</td>
</tr>
<tr>
<td>Si \rightarrow Fe peak</td>
<td>3×10^9</td>
</tr>
</tbody>
</table>
What is a supernova? Why massive star becomes a supernova

- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.
- Star collapses in few seconds
- Rebounds as supernova
 - Reason for rebounding is topic of current research
- Expel outer layers

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4\text{He} \rightarrow ^4\text{He}$</td>
<td>$10^7,\text{K}$</td>
</tr>
<tr>
<td>$3,^4\text{He} \rightarrow ^12\text{C}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>$^{12}\text{C} + ^4\text{He} \rightarrow ^16\text{O}, \text{Ne, Na, Mg}$</td>
<td>8×10^8</td>
</tr>
<tr>
<td>$\text{Ne} \rightarrow ^{16}\text{O}, \text{Mg}$</td>
<td>1.5×10^9</td>
</tr>
<tr>
<td>$\text{O} \rightarrow \text{Mg, S}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>$\text{Si} \rightarrow \text{Fe peak}$</td>
<td>3×10^9</td>
</tr>
</tbody>
</table>