

Examining the fossil, conclusions

- Calculations, which contain U expanding and nuclear physics, yield abundances of ⁴He, ⁷Li, ²H, & ³He. The only free parameter is number density of n and p.
- Measured and calculated abundances are consistent.
 - ⁷Li is slightly off
- Understanding of BB (and nuclear physics) is confirmed.
- Surprise: Most of neutrons and protons are <u>not</u> in stars. Lots in gas between galaxies. Location of about 50% is not known. Ast 207 F2009

Fossil from Burgess Shale

Summarizing questions What are the fossils (something that can be examined) from the universe at 3 min? The amount of helium in the sun depends on the properties of deuterium. If deuterium is less tightly bound, would there be more or less helium on the surface of the sun?

Ast 207 F2009

 Weighing the Sun To find mass of sun, measure period T & size R of a planet's orbit. Kepler's 3rd Law: M = R³ / T² for R in AU, T in years, and M in solar masses. Under influence of the gravity of the sun, a planet moves a given distance. If the time is short, the mass of the sun is A. greater. B. less. 						
Mass	Test object	Motion	Behavior if more massive			
Eros / Earth	A ball	Drop of 1m	Time is shorter			
Sun	Earth	An orbit				

	Eros / Earth	A ball	Drop of 1m	I ime is shorter		
	Sun	Earth	An orbit	Period is shorter		
	Galaxy	Cloud of gas				
Ast 207 F2009						

