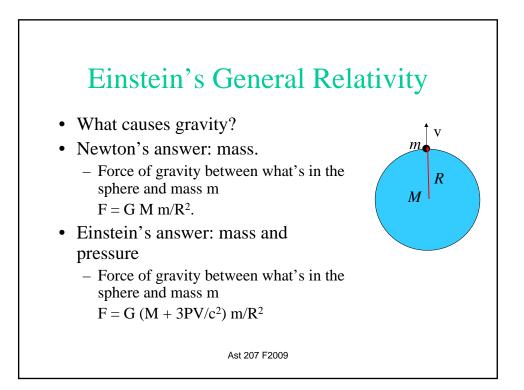
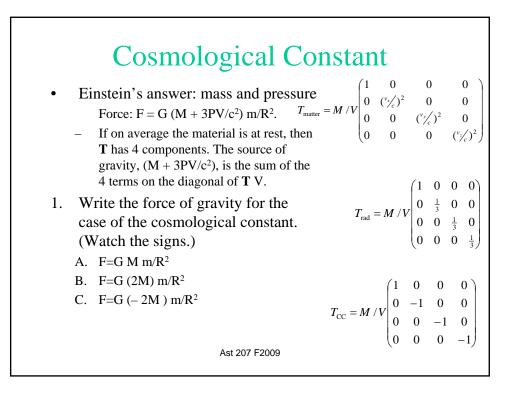


- Final exam
 - Final from 2008 (with answers) is on angel.
 - Covers entire course with emphasis on 20th century cosmology (Oct 28 to end of term, Hwk 7–10)
 - One 8.5×11" cheat sheet
 - Mon, 14th, 3:00-5:00, 1410 BPS (large classroom next door)
- Office hours
 - Normal time on Mon.
- Please fill out on-line SOCT http://rateyourclass.msu.edu
 - Will close when grades are submitted.

Ast 207 F2009



How did Einstein think of "cosmological constant," stuff that repels?

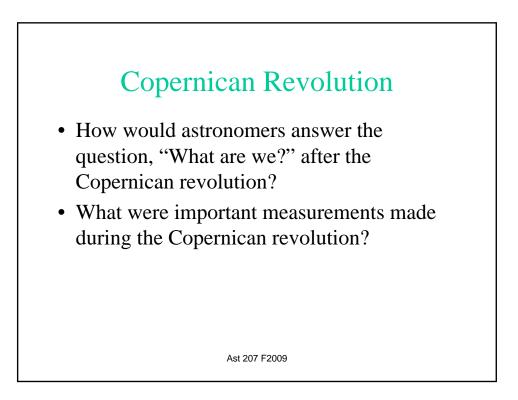

- Example of how physicists create new ideas.
- Figure out the appropriate mathematics to describe gravity.
 - Newton: Vectors describe gravity.
 - Einstein's happiest thought: "A man falling from a roof does not feel gravity" (until he hits the ground). Years of thought. Tensors describe gravity.
- Figure out the consequences of the theory.

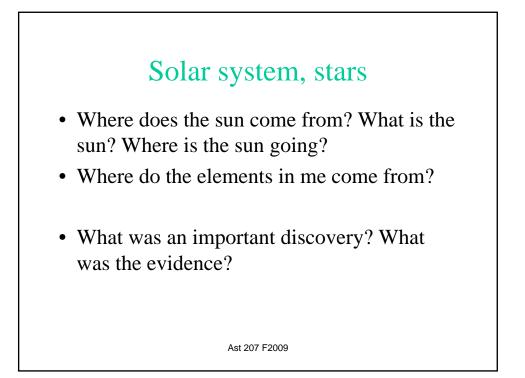
Ast 207 F2009

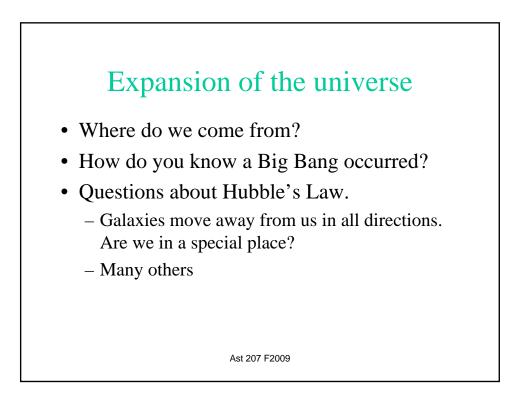
	• ,			
Source of Gravity				
 Einstein's answer: mass and pressure F = G (M + 3PV/c²) m/R². Newton's Law of gravity F = G M m/R². T = Einstein's Law of gravity Curvature of space = 8πG (Mass-Pressure tensor) G = 8πG T Object feels curvature of space and changes its momentum G and T are tensors having 16 components T_{matter} = If on average the material is at rest, then T has 4 components. The source of gravity, (M + 3PV/c²), 				
 Components. The source of gravity, (M + 3P v/c²), is the sum of the 4 terms on the diagonal of T V. Ordinary matter has little pressure because speed is much smaller than c. 3PV/c² = M (v/c)² is negligible compared with M. Radiation has positive pressure 3PV/c² = M. F = G 2M m/R². Ast 207 F2009 				>

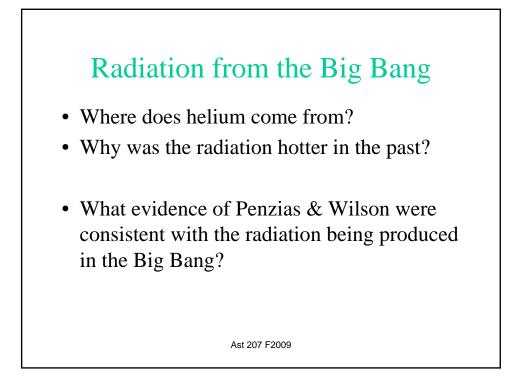
Cosmological C	Constant
 Einstein's answer: mass and pressure Force: F = G (M + 3PV/c²) m/R². If on average the material is at rest, then T has 4 components. source of gravity, (M + 3PV/c²), is the sum of the 4 terms on the diagonal of T V. 	$T_{\text{matter}} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & (\frac{v_{y_c}}{2})^2 & 0 & 0 \\ 0 & 0 & (\frac{v_{y_c}}{2})^2 & 0 \\ 0 & 0 & 0 & (\frac{v_{y_c}}{2})^2 \end{pmatrix}$
 Einstein in 1920s: My equations of gravity allow a special tensor. E called it a "cosmological constant." 	$T_{\rm rad} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$
 T_{cc} has same mathematical properties as T_{matter} and T_{rad}. The CC has mass and negative pressure. Normal pressure pushes. CC sucks. The CC may exist in Nature. "What is not forbidden is mandatory"—W Pauli Ast 207 F2009 	$(0 \ 0 \ 0 \ -3)$ $T_{\rm CC} = M / V \begin{pmatrix} 1 \ 0 \ 0 \ 0 \\ 0 \ -1 \ 0 \ 0 \\ 0 \ 0 \ -1 \ 0 \\ 0 \ 0 \ 0 \ -1 \end{pmatrix}$




	Cosmological Constant
•	Einstein's answer: mass and pressure
	Force: $F = G (M + 3PV/c^2) m/R^2$.
•	Einstein's Law of gravity
	Curvature of space = $8\pi G$ Mass-Pressure
	$G = 8\pi G T$
	 Object feels curvature of space and changes its momentum
•	Einstein in 1920s: My equations of gravity allow "cosmological constant"
	 T_{cc} has same mathematical properties as T_{matter} and T_{rad}.
	 Pauli: "What is not forbidden is mandatory."
	$- F = G (M - 3M) m/R^2$
	$\mathbf{F} = -\mathbf{G} \ \mathbf{2M} \ \mathbf{m}/\mathbf{R}^2.$
	 Repulsive gravity
•	Einstein tried to make his theory of gravity prevent expansion or contraction of the universe. The cosmological constant balances gravity of matter.
	 In 1929, Hubble discovered the expansion of the U. Einstein said the cosmological constant was "his greatest blunder."
	 Had he lived to 1998, he would have called it his greatest discovery.
	Ast 207 F2009


Summarizing questions


- What is the evidence for dark energy? What was measured. If the result of the measurements were ____, there would be no evidence for dark energy.
- Ideas needed to answer the question:
 - SN are fainter than if U had no dark energy.
 - Flux of SN is related to distance.
 - With no DE, distance to SN is shorter.
 - Redshift of SN determines the amount U expands.
 - SN have the same luminosity: They are standard candles.
 - Astronomers can model flux vs redshift for different density parameters.
 - What plot did we look at? What about the plot indicated DE.


Ast 207 F2009

