

The Interstellar Medium

- = the gas disk
- Includes ionized, neutral, molecular gas $\left(\mathrm{H}^{+}, \mathrm{H}^{0}, \mathrm{H}_{2}\right)=\left(\mathrm{H} \mathrm{I}, \mathrm{H} \mathrm{II}, \mathrm{H}_{2}\right)$

Molecular clouds [12.1,12.2]

- Massive interstellar gas clouds
- Up to $\sim 10^{5} M_{\odot}$

Fraction by mass
H 73\% $\mathrm{He} 25 \%$ Metals 2\%

- 100's of LY in diameter.
- High density by interstellar medium standards
- Up to 10^{5} atoms per cm^{3}
- Shielded from UV radiation by dust, so atoms combined into molecules.
- Mostly H_{2}, but not easily detectable
- Also $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CO}$ etc.
- form emission lines in observable passbands
- CO is usual tracer.
- mm wave observations (\rightarrow low angular resolution)
- All stars form in molecular clouds.

CO map of Milky Way

Molecular clouds are in the disk and are associated with dust.

Computer simulation of Star Formation in a Molecular Cloud

By
Matthew Bate, University of Exeter UK

- Collapse and fragmentation of 50 solar-mass cloud.
- Initially 1 light-year in diameter.

Star formation thought to propagate in wave through dense molecular clouds

- Photons from very luminous O stars heat and blow away surrounding gas.
- So slightly older clusters no longer shrouded by dusty gas
- Compression of gas further inside cloud causes inward wave of star formation ("triggered" star formation).

Orion Molecular Cloud

- 100 pc across
- $200,000 \mathrm{M}_{\odot}$
- Only a few of its stars close to the near edge can be seen in visible light.
- But infrared images penetrate the dust and show many more stars.

The Orion-Monoceros Molecular Clouds

Orion A
$1.0 \times 10^{5} \mathrm{M}_{\odot}$
Orion B
0.8

Mon R2
0.9

Total complex $4 \times 10^{5} \mathrm{M}_{\odot}$

The Orion Nebula

- Ionized by UV phots from hot star.
- Recombination lines from H, He.
- + lines from heavier elements due to collisional excitation.
- $\quad \rightarrow$ measure chemical abundances.

Ne III

