

Tools	of the Trade
 Modeling Chemical Enrichme One zone, accreting box model. Start with pure H, He mix. Further H, He falls in at specified ra Follow evolution of individual elements, O, Ne, Mg, Si, S, Ar, Ca and Fe. Subdivide stellar population into the stars: <1Molector nothing recycled 1.0 - 8.0 Molector fraction give white dwarf >8Molector collapse supernova Assume that each class of stars sp % of its mass of each element backend of a specified lifetime. Must provide IMF to specify mix of Two extreme models: "Solar neighborhood": conventional birthrate, slow infall (15% gas at 100 fractional fractional (15% gas at 0.5 Gyr). 	"Closed box" model = "back of the envelope" analytical calculation to get a feel for the problem. Then the computer sledgehammer. Need a powerful but versatile language: <i>Python</i> ? (free book on course website) C++? Fortran? IMF, slow stellar Gyr).

SO FAR:	
Galaxy types	
Ancient history	
 Milky Way and spiral galaxy morphology 	
Nuclear bulge	Liver 2 due Cent 22
• Disk	Hwk 2 due Sept 23
Stellar halo	Hwk 3 not yet
Dark matter halo	assigned, but due Sept 30
Star-forming regions	
Chemical enrichment	
 NOW Kinematics of spiral galaxies Rotation curves → mass distribution (includes sidetrack about measuring distances) Spiral structure General properties of S, E, Irr galaxies Midterm 1 (Wed. Oct 2) 	

Homework Assignment 2 -- Due Wednesday Sept. 23 Oort(ure) Torture

- Do [CO] Problems 24.15, 24.16, 24.17
- Hints for Problem 24.16
 - Substitute into eqns. 24.37 and 24.38 the first order Taylor expansion for $\Omega \Omega_0$
 - Look at figure 24.22
 - Don't forget to use those Old-Favorite trig identities:
 - $\sin l \, \cos l \, = \frac{1}{2} \sin 2l$

```
\cos^2 l = \frac{1}{2} (1 + \cos 2l)
```

- For problem 24.17, explain *both* the angular dependence and the offset in the zero-point of v_t
- Also do CO problems:
 - 24.21 (dark matter density).
 - 24.36 (lots of steps in this problem)

Note: There will be another homework assignment due on Wed. Sept. 30, followed by Midterm 1 on Friday Oct 2