

TOOIS O
Modeling Chemical Enrichme" " One zone, accreting box model.

- Start with pure H, He mix.
- Further H, He falls in at specified re
- Follow evolution of individual eleme
$\mathrm{N}, \mathrm{O}, \mathrm{Ne}, \mathrm{Mg}, \mathrm{Si}, \mathrm{S}, \mathrm{Ar}, \mathrm{Ca}$ and Fe .
- Subdivide stellar population into thr stars:
- $<1 \mathrm{M}_{\odot} \quad$ nothing recycled
- $1.0-8.0 \mathrm{M}_{\odot}$ fraction give white dwarf
- $>8 \mathrm{M}_{\odot} \quad$ Core collapse supernova
- Assume that each class of stars sp $\%$ of its mass of each element back end of a specified lifetime.
- Must provide IMF to specify mix of
- Two extreme models:
- "Solar neighborhood": conventional IMF, slow stellar birthrate, slow infall (15% gas at 10 Gyr) .
- "Giant Elliptical": flatter IMF, 100x higher birthrate, fast infall (15% gas at 0.5 Gyr).

Kinematics of the Milky Way

- From [CO] 24.3, especially pp 901-14.
- Coordinate systems
- Galactic latitude $\left(l_{\mathrm{II}}\right)$, longitude $\left(b_{\mathrm{II}}\right)$
- Spherical coordinates centered on Sun

- R, θ, z

- Peculiar velocities
u, v, w
- Π, Θ, Z velocities but relative to Local Standard of Rest
- LSR is point instantaneously centered on Sun, but moving in a perfectly circular orbit.
- Solar motion $=$ motion of sun relative to LSR
- Star density is higher towards GC.
- Those stars are on orbits that Sun overtakes.
- Velocity ellipsoids and asymmetrical drift.

Sun's orbital velocity $V \sim 220 \mathrm{~km} \mathrm{~s}^{-1}$

- Sun's orbital period $P=\frac{R_{0}}{V} \sim 230$ million yrs.
- Approx. mass interior to Sun's orbit:

$$
\begin{aligned}
& F_{\text {cenrifiugal }}=F_{\text {grav }} \\
& \frac{m V^{2}}{R_{0}}=\frac{G m M}{R_{0}{ }^{2}} \\
& M=\frac{V^{2} R_{0}}{G} \sim 9 \times 10^{10} \mathrm{M}_{\odot}
\end{aligned}
$$

Fig 24.21

Differential Rotation (see [CO pp. 909-911)

- From the figure:

$$
\begin{aligned}
& v_{r}=\Theta \cos \alpha-\Theta_{0} \sin \ell, \\
& v_{t}=\Theta \sin \alpha-\Theta_{0} \cos \ell,
\end{aligned}
$$

- Angular rotation velocity: $\quad \Omega(R) \equiv \frac{\Theta(R)}{R}$
- + some geometry $\rightarrow \quad v_{r}=\left(\Omega-\Omega_{0}\right) R_{0} \sin \ell$,

$$
v_{t}=\left(\Omega-\Omega_{0}\right) R_{0} \cos \ell-\Omega d
$$

- Taylor expansion:
[Fig 24.22]

$$
\Omega(R)=\Omega_{0}\left(R_{0}\right)+\left.\frac{d \Omega}{d R}\right|_{R_{0}}\left(R-R_{0}\right)+\cdots
$$

Oort's Constants:

$$
v_{r} \simeq A d \sin 2 \ell
$$

$$
A \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}-\frac{\Theta_{0}}{R_{0}}\right]
$$

$$
v_{t} \simeq A d \cos 2 \ell+B d
$$

$$
B \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}+\frac{\Theta_{0}}{R_{0}}\right]
$$

Oort's Constants
 $$
\begin{aligned} A & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}-\frac{\Theta_{0}}{R_{0}}\right] \\ B & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}+\frac{\Theta_{0}}{R_{0}}\right] \end{aligned}
$$

$$
\begin{aligned}
& v_{r} \simeq A d \sin 2 \ell, \\
& v_{t} \simeq A d \cos 2 \ell+B d
\end{aligned}
$$

- contain important information about Galactic rotation curve.
- Angular velocity for circular motion at R_{o} :

$$
\Omega_{\mathrm{o}}=A-B
$$

- Gradient of rotation curve at R_{o} :

$$
\left.\frac{d \Theta}{d R}\right|_{R_{0}}=-(A+B)
$$

$$
\Omega(R)=\frac{\Theta(R)}{R} \quad \stackrel{\bullet}{\mathrm{G} . \mathrm{C} .}^{\stackrel{\Theta}{\mathrm{O}}^{\Theta}}
$$

The Tangent Point Method

- In principle, for stars, clusters, etc:
- measure distance d and v_{r}
- assume circular orbit
- For H I $21 \mathrm{~cm}, \mathrm{CO}$, etc. radio emission:
- Only can measure v_{r}
- Use tangent point method

For orbits almost at $R_{o}: v_{r, \text { max }} \approx 2 A R_{o}(1-\sin \ell)$

SO FAR:

- Galaxy types
- Ancient history
- Milky Way and spiral galaxy morphology
- Nuclear bulge
- Disk
- Stellar halo
- Dark matter halo

Hwk 2 due Sept 23

Hwk 3 not yet assigned, but due Sept 30

- Star-forming regions
- Chemical enrichment

NOW... Kinematics of spiral galaxies

- Rotation curves \rightarrow mass distribution
(includes sidetrack about measuring distances)
- Spiral structure
- General properties of S, E, Irr galaxies
- Midterm 1 (Wed. Oct 2)

Homework Assignment 2 -- Due Wednesday Sept. 23 Oort(ure) Torture

- Do [CO] Problems 24.15, 24.16, 24.17
- Hints for Problem 24.16
- Substitute into eqns. 24.37 and 24.38 the first order Taylor expansion for $\Omega-\Omega_{0}$
- Look at figure 24.22
- Don't forget to use those Old-Favorite trig identities: $\sin l \cos l=\frac{1}{2} \sin 2 l$
$\cos ^{2} l=1 / 2(1+\cos 2 l)$
- For problem 24.17, explain both the angular dependence and the offset in the zero-point of v_{t}
- Also do CO problems:
- 24.21 (dark matter density).
- 24.36 (lots of steps in this problem)

Note: There will be another homework assignment due on Wed. Sept. 30, followed by Midterm 1 on Friday Oct 2

