







[CO pg. 917] Density as shown by flat rotation curves
Bhcx to
$$f_{centralPrint} = f_{earnytrationklet}$$

 $\frac{m V^2}{r} = \frac{GM(r)}{V^2} \frac{M(r)}{r^2}$
 $M(r) = \frac{V^2 r}{G}$
 $\frac{dM(r)}{dr} = \frac{V^2}{r}$
 $\frac{V}{r}$
 $\frac{V}{r}$

Semi-derivation of Tully-Fisher Relation:	$M_{\rm B} = -9.95 \log_{10} k$ $M_{\rm B} = -10.2 \log_{10} k$ $M_{\rm B} = -11.0 \log_{10} k$	$V_{max} + 2.71$ (Sb)
• Mass interior to outermost <i>R</i> where rotation curve can be measured:		
$Mass = \frac{V_{\max}^2 R}{G}$		
• Assume $L = Mass / const.$		
• "Freeman Law" (observed factmaybe): $Surf.Bright. = \frac{L}{4\pi R^2} = const.$		Important as a DISTANCE calibrator!
$L = const \times V_{max}^4$		
Convert to Absolute B-band magnitudes:		
$M_{B} = M_{sun} - 2.5 \log_{10} \left(\frac{L}{L_{sun}} \right) = -10 \log_{10} V_{max} + const.$		

SO FAR:

- · Galaxy types
- Ancient history
- Milky Way and spiral galaxy morphology
 - Nuclear bulge
 - Disk
 - Stellar halo
 - Dark matter halo
- Star-forming regions
- Chemical enrichment

Kinematics of spiral galaxies

- Rotation curves → mass distribution (includes sidetrack about measuring distances)
- Spiral structure [CO 25.3]
- General properties of S, E, Irr galaxies
- Midterm 1 (Wed. Oct 2)

Hwk 2 due Sept 23

Hwk 3 not yet assigned, but due Sept 30

Midterm 1 Wed, Oct 2