

What causes spiral structure?

- Winding up of arms
- Due to differential rotation
- Stochastic, Self-Propagating Star Formation
- Chain-reaction star formation
- SN shells \rightarrow shock fronts \rightarrow density enhancements \rightarrow star formation \rightarrow more SN
- Differential rotation then winds these regions up into spiral patterns
- Density Waves

- Wave in gravitational potential
- Orbital velocity of stars different than pattern speed
- Stars, gas bunch up at position of spiral arms
- Causes higher grav. potential
- Unclear if self-sustaining or forced.

Flat rotation curves

Basic nature of a density wave

From: Toomre, Annual Review of Astronomy \& Astrophysics, 1977 Vol. 15, 437.

Rotation is opposite to the example on previous slide:

Figure 2 Slow $m=2$ kinematic wave on a ring of test particles, all revolving clockwis (like the 12 shown) with mean angular speed Ω in strictly similar and nearly circular orbits The small elliptical "epicycles," traversed counterclockwise in the above sequence of snap shots separated in time by exactly one-quarter of the period $2 \pi / \kappa$ of radial travel along each orbit, depict the apparent motions of these particles relative to their mean orbital positions or "guiding centers." Drawn for the case $\kappa=\sqrt{2 \Omega}$-or one where the rotation speed $V(r)=r \Omega(r)=$ const at neighboring radii-the diagram emphasizes that the oval locus of such independent orbiters advances in longitude considerably more slowly than the particles themselves. That precession rate equals $\Omega-\kappa / 2$, as one can verify at once by comparing the last frame with the first.

- At each R_{m}, stars' positions in epicycles are forced into a specific pattern by gravitational potential of spiral arm.
- Sum of positions of stars at this R_{m} forms an ellipse rotating at pattern speed.

- Spiral density pattern is sum of many ellipses, all rotating at same pattern speed.

Some Solar System Resonance Phenomena

