k Set 3 .
Do Wed Sept. 30 Spiral Structure
[CO 25.13,25.14, 25.16, 25.20] [CO 253]

Grand design (10%) Multi-arm (60%) Flocculent (30%)
M51 M101 NGC 2841

Inner rings Outer Ring
NGC 7096 MS1 NGC 4340

What causes spiral structure?

*  Winding up of arms
¢ Due to differential rotation

+ Stochastic, Self-Propagating Star Formation
» Chain-reaction star formation

* SN shells = shock fronts =» density enhancements =»
star formation =»more SN

« Differential rotation then winds these regions up into
spiral patterns

The 3 kpe cloud completms holf ol o
st e e 83 pe o
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+ Density Waves i
* Wave in gravitational potential
* Orbital velocity of stars different than pattern speed

C « Stars, gas bunch up at position of spiral arms
» Causes higher grav. potential )

: L Tra 3 kpc clowd wil o the 6.5 kpe
* Unclear if self-sustaining or forced. o in ¥ o i o o
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Retrograde Motion & Ptolemy’s
Epicycles

* Trying to place Earth at
center. Alexandria, 1y40AD

* Using only circular
motions.

* Led to very complicated
system.

Path of Mars,
etc. as seen
from Earth

e Epicycles... the short form.
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| z For lurid details, see [CO 25.3 ]
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5 —K2p Harmonic oscillation in R, ¢, z about circular orbit
(Epicycles)
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Basic nature of a density wave
From: Toomre, Annual Review of Astronomy & Astrophysics, 1977 Vol. 15, 437.
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of spiral arm.

*  Sum of positions of
stars at this R, forms
an ellipse rotating at
pattern speed.

Rotation is opposite to the example on previous slide:
APQ

Kt=0 nj2 Kt=1r

Figure 2 Slow m = 2 kinematic wave on a ring of test particles, all revolving clockwist
(like the 12 shown) with mean angular speed Q in strictly similar and nearly circular orbits
The small elliptical “epicycles,” traversed counterclockwise in the above sequence of snap-
shots separated in time by exactly one-quarter of the period 2m/x of radial travel along
eact')‘orbi[, depiq\ .lhe apparent motions of these particles relative to their mean urbfuﬂ . Splral density pattern
positions or “guiding centers.” Drawn for the case x = ,/20—or one where the rotation . £

speed V(r) = rQ(r) = const at neighboring radii—the diagram emphasizes that the oval 1S sum oI many

locus of such independent orbiters advances in longitude considerably mvrc[ slowly than ellipses, all rotating at
the particles themselves. That precession rate equals £ — /2, as one can venly at once by

comparing the last frame with the first, same pattem Speed'

Some Solar System Resonance Phenomena
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Lin & Shu’s
theory

Density response of
the stellar disk

field due to stars +
and gas
Density response of
the gaseous disk
" L}
Total material needed Total response in
to maintain the - the distribution of
1 the matter in the
field disk

resultant gravitational T

This equation serves
to specify the wave
properties completely

Figure 12.26. The calculational scheme used to calculate the
normal modes of oscillation of a disk galaxy. (After C. C. Lin.)
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" Perturbed form of collisionlesg‘x\
Boltzmann equation.

’ " “quite complicated”
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Figure 12.27. Contours of equal density excesses above the
average value around a circle in a typical spiral mode. The
dashed circle gives the radius where the material rotates at the
same speed a3 the wave pattern.

Inner Lindblad Resonance (ILR)
Co-rotation Radius
Outer Lindblad Resonance (OLR)

Hwk Set 3
Due Wed Sept. 30
[CO 25.13, 25.14, 25.16, 25.20]

Important in all
disk galaxies
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Density waves cannot propagate across ILR or OLR
1]
Density wave theory interprets most
spirals as 2-armed 1
* 4-armed patternisn/m=1/4 H
* exists over a narrow range of radius. g
=> less likely to be seen.
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