

All Universes ~ "flat" ($\rho \sim \rho_c$) at early times.

Homework problem 29.9 will show:

$$\Omega(t) = \frac{\rho(t)}{\rho_c(t)} = 1 + \frac{kc^2}{(dR/dt)^2}$$
(29.194)
and that $dR/dt \to \infty$ as $t \to 0$

implying $\rho(t) \rightarrow \rho_c(t)$ as $t \rightarrow 0$ for all values of k.

Consequences:

Homework:

[CO 29.9] Due Oct. 26

1. For small *t*, it is OK to use:

$$\left(\left(\frac{1}{R}\frac{dR}{dt}\right)^2 - \frac{8}{3}\pi G\rho\right)R^2 = 0$$

2. Even tiny departures from flatness ($\rho = \rho_c$) at small *t* would have grown into impossibly large departures from flatness by present time.

