

Cosmological Principle: Universe is homogeneous \& isotropic

Newtonian Cosmology

- Nested, expanding shells
- Infinite series, all same density $\rho(t)$
- Energy:

- Follow single shell, mass m
- $r(t)=($ Scale factor) $\times($ co-moving coordinate $)$

$$
\begin{aligned}
r(t) & =R(t) \varpi \\
\frac{d r(t)}{d t} & =v(t)=\frac{d R(t)}{d t} \varpi
\end{aligned}
$$

$$
\frac{1}{2} m\left(\frac{d R}{d t} \varpi\right)^{2}-\frac{4}{3} \pi G \rho m(R \varpi)^{2}=-\frac{1}{2} m k c^{2} \varpi^{2}
$$

Define: Total Energy $=-\frac{1}{2} m k c^{2} \varpi^{2}$
Why???
Cosmological principle

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2}
$$

simultaneously have $\mathrm{KE} \rightarrow 0$

$$
E=-\frac{4}{3} \pi G \rho m R^{2} \varpi^{2} \propto m \varpi^{2}
$$

Other forms of the Friedman Equation:

$$
\begin{aligned}
\text { Kinetic }+ \text { Potential } & =\text { Total } \\
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2} & =-k c^{2} \\
\left(\frac{d 2.10]}{d t}\right)^{2}-\frac{8 \pi G \rho_{\mathrm{o}}}{3 R} & =-k c^{2}
\end{aligned}
$$

- Define: $R\left(t_{o}\right)=1$
- Conservation of mass:

$$
R^{3}(t) \rho(t)=R^{3}\left(t_{o}\right) \rho\left(t_{o}\right)=\rho_{o}
$$

- Hubble's law:
[29.7]

But also:

$$
\begin{gathered}
v(t)=\frac{d R(t)}{d t} \varpi \\
H(t)=\frac{v(t)}{r(t)}=\frac{\frac{d R(t)}{d t} \varpi}{R(t) \varpi}=\frac{1}{R} \frac{d R(t)}{d t}
\end{gathered}
$$

The Critical Density

$$
\begin{aligned}
& E=-\frac{1}{2} m k c^{2} \varpi^{2} \\
& \text { Energy per unit mass }=-\frac{1}{2} k c^{2} \varpi^{2} \\
& k>0 \rightarrow \text { negative E, shells will collapse back } \\
& k=0 \rightarrow \mathrm{E}=0 \text {, each shell has exactly escape } \\
& \text { velocity. } \\
& k<0 \rightarrow \text { positive E, shells expand forever } \\
& \text { Critical density } \\
& k=0 \rightarrow H^{2}=\frac{8}{3} \pi G \rho \\
& \rho_{\mathrm{c}}(t)=\frac{3 H^{2}(t)}{8 \pi G} \\
& \rho_{\mathrm{c}, \mathrm{o}}=1.88 \mathrm{x} 10^{-26} h^{2} \mathrm{~kg} \mathrm{~m}{ }^{-3} \\
& \Omega(t)=\frac{\rho(t)}{\rho_{c}(t)} \quad
\end{aligned}
$$

The Critical Density

Homework: [CO 29.7]
$=$ max size + lifetime of closed U .
Due Oct. 26

The Critical Density

All Universes \sim "flat" $\left(\rho \sim \rho_{c}\right)$ at early times.

- Homework problem 29.9 will show:

Homework:
[CO 29.9]
Due Oct. 26

$$
\begin{equation*}
\Omega(t)=\frac{\rho(t)}{\rho_{c}(t)}=1+\frac{k c^{2}}{(d R / d t)^{2}} \tag{29.194}
\end{equation*}
$$

and that $\quad d R / d t \rightarrow \infty$ as $t \rightarrow 0$
implying $\rho(t) \rightarrow \rho_{c}(t)$ as $t \rightarrow 0 \quad$ for all values of k.

Consequences:

1. For small t, it is OK to use:

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=0
$$

2. Even tiny departures from flatness $\left(\rho=\rho_{c}\right)$ at small t would have grown into impossibly large departures from flatness by present time.

Including Pressure

[pp. 1160-1161]

- For a fluid undergoing adiabatic expansion (no transfer of heat):

