

Einstein's eqn: $R_{\mu\nu} - g_{\mu\nu}K$	$= -8\pi GT_{\mu\nu}$	Stolen from Weinberg, "Gravitation & Cosmology"
Ricci tensor: $R_{\mu\kappa} = \frac{\partial \Gamma^{\lambda}_{\mu\lambda}}{\partial x^{\kappa}} - \frac{\partial \Gamma^{\lambda}_{\mu\kappa}}{\partial x^{\lambda}} + \Gamma^{\eta}_{\mu\lambda}\Gamma^{\lambda}_{\kappa\eta} - \Gamma^{\eta}_{\mu\kappa}\Gamma^{\lambda}_{\lambda\eta}$ Example: For spherical symmetry + orthogonal coordinates:		Γ= "Affine connection" or "Christoffel symbol"
$d\tau^2 = B(r) dt^2 - A(r) dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\varphi^2)$ $g_{tt} = -B(r) g_{rr} = A(r) \qquad g_{\theta\theta} = r^2 \qquad g_{\phi\phi} = r^2 \sin^2 \theta$		
Einstein's eqn. in empty space: $R_{\mu\nu} = 0$		
Non-zero components of Ricci tensor: Where: ' = d/dr " = d^2/dr^2	$\begin{split} R_{rr} &= \frac{B''(r)}{2B(r)} - \frac{1}{4} \left(\frac{B'(r)}{B(r)}\right) \left(\frac{A'(r)}{A(r)} - \frac{A'(r)}{A(r)}\right) \\ R_{\theta\theta} &= -1 + \frac{r}{2A(r)} \left(-\frac{A'(r)}{A(r)} + \frac{1}{2A(r)} \right) \\ R_{\varphi\varphi} &= \sin^2 \theta R_{\theta\theta} \\ R_{tt} &= -\frac{B''(r)}{2A(r)} + \frac{1}{4} \left(\frac{B'(r)}{A(r)}\right) \left(\frac{A'(r)}{A(r)} - \frac{A'(r)}{A(r)}\right) \\ R_{\mu\nu} &= 0 \qquad \text{for } \mu \neq \nu \end{split}$	$+ \frac{B'(r)}{B(r)} - \frac{1}{r} \left(\frac{A'(r)}{A(r)} \right)$ $\frac{B'(r)}{B(r)} + \frac{1}{A(r)}$ $\frac{r}{b} + \frac{B'(r)}{B(r)} - \frac{1}{r} \left(\frac{B'(r)}{A(r)} \right)$
Schwarzschild's solution (19 $d\tau^{2} = \left[1 - \frac{2MG}{r}\right]dt^{2} - \left[1\right]$	16): Use constraints: At large in flat S $1 - \frac{2MG}{r} \Big]^{-1} dr^2 - r^2 d\theta - r^2 s$	e r, must give Newtonian solution Special Rel. space-time. $\sin^2 \theta \ d\varphi^2$

Schwarzschild's solution (1916): $d\tau^{2} = \left[1 - \frac{2MG}{r}\right] dt^{2} - \left[1 - \frac{2MG}{r}\right]^{-1} dr^{2} - r^{2} d\theta - r^{2} \sin^{2} \theta d\phi^{2}$ Blows up at r = 2MGor in another equally good form: $\rho = \frac{1}{2} \left[r - MG + (r^{2} - 2MGr)^{1/2}\right]$ $r = \rho \left(1 + \frac{MG}{2\rho}\right)^{2}$ $d\tau^{2} = \frac{\left(1 - \frac{MG}{2\rho}\right)^{2}}{\left(1 + \frac{MG}{2\rho}\right)^{2}} dt^{2} - \left(1 + \frac{MG}{2\rho}\right)^{4} (d\rho^{2} + \rho^{2} d\theta^{2} + \rho^{2} \sin^{2} \theta d\phi^{2})$ Stays happy at $r = 2MG \Rightarrow \rho = MG/2$ But what happens with t? Hmmm....