Some Metrics

$$
d s^{2}=\sum g_{i j} d x_{i} d x_{j}
$$

Flat space-time (special rel. = no gravity):

$$
(d s)^{2}=(c d t)^{2}-(d \ell)^{2}=(c d t)^{2}-(d x)^{2}-(d y)^{2}-(d z)^{2}
$$

Flat space-time, spherical coords:

$$
(d s)^{2}=(c d t)^{2}-(d r)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
$$

Space filled by uniform matter distribution:

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \varpi^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
$$

Empty space around point source of matter:

$$
(d s)^{2}=\left(c d t \sqrt{1-2 G M / r c^{2}}\right)^{2}-\left(\frac{d r}{\sqrt{1-2 G M / r c^{2}}}\right)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
$$

Units, etc. -- to c or not to c :

$$
\begin{aligned}
& d \tau^{2}=\left[1-\frac{2 M G}{r}\right] d t^{2}-\left[1-\frac{2 M G}{r}\right]^{-1} d r^{2}-r^{2} d \theta-r^{2} \sin ^{2} \theta d \varphi^{2} \quad \begin{array}{l}
c t \rightarrow t \\
\text { (Weinberg) }
\end{array} \\
& d \tau^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)}-r^{2} d \phi^{2} \\
& c t \rightarrow t ; G M / c^{2} \rightarrow M ; \text { leave out } \theta \\
& \text { (Taylor \& Wheeler) }
\end{aligned}
$$

Vague outline of General Relativity

Metric for flat space-time, spherical coords:

Stolen from Weinberg, "Gravitation \& Cosmology"

$$
(d s)^{2}=(d t)^{2}-(d r)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
$$

Einstein's eqn: $\quad R_{\mu \nu}-g_{\mu \nu} K=-8 \pi G T_{\mu \nu}$
In empty space: $R_{\mu \nu}=0$
For spherical symmetry: $d s^{2}=B(r) d t^{2}-A(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$
Unknown functions, allow space to be curved
Non-zero components of
Einstein Eqn:
Where:

$$
'=d / d r
$$

$$
\begin{array}{ll}
R_{r r}=\frac{B^{\prime \prime}(r)}{2 B(r)}-\frac{1}{4}\left(\frac{B^{\prime}(r)}{B(r)}\right)\left(\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)-\frac{1}{r}\left(\frac{A^{\prime}(r)}{A(r)}\right) & =0 \\
R_{\theta \theta}=-1+\frac{r}{2 A(r)}\left(-\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)+\frac{1}{A(r)} & =0 \\
R_{\varphi \varphi}=\sin ^{2} \theta R_{\theta \theta} & =0 \\
R_{t t}=-\frac{B^{\prime \prime}(r)}{2 A(r)}+\frac{1}{4}\left(\frac{B^{\prime}(r)}{A(r)}\right)\left(\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)-\frac{1}{r}\left(\frac{B^{\prime}(r)}{A(r)}\right)=0
\end{array}
$$

Schwarzschild's solution (1916):

$$
d s^{2}=\left[1-\frac{2 M G}{r}\right] d t^{2}-\left[1-\frac{2 M G}{r}\right]^{-1} d r^{2}-r^{2} d \theta-r^{2} \sin ^{2} \theta d \varphi^{2}
$$

Black Holes \& the Schwarzschild Metric

Simplified metric, from
Taylor \& Wheeler2
(no c^{2}, no G, no θ):

$$
d S^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)}-r^{2} d \phi^{2}
$$

- Schwarzschild radius: $r=2 M$
- Schwarzschild coordinates
- reconstructed as if seen from a point where space is flat.
- Metric for observer sitting on a shell at r

Proper time:
Proper distance:
$d \tau=d t_{\text {shell }}=\left(1-\frac{2 M}{r}\right)^{1 / 2} d t \quad d \mathcal{L}=d r_{\text {shell }}=\frac{d r}{\left(1-\frac{2 M}{r}\right)^{1 / 2}}$
\rightarrow Observer measures things in locally flat space-time:

$$
d s^{2}=d t_{\text {shell }}^{2}-d r_{\text {shell }}^{2}-r^{2} d \phi^{2}
$$

- Free-falling astronaut:

- Metric = flat space-time in local region.
- Time on wristwatch $=\tau=s$.

Geodesics

- Light always follows null geodesic, with $\Delta s=\Delta \tau=0$
- In free-fall, world-line of objects with mass = extremum of $\int d s \quad\left(=\int d \tau\right)$
- Normally a maximum
\rightarrow observer travelling on Geodesic sees max. time pass

$$
\frac{d s}{d ?}=0
$$

Geodesics

Dubious example in CO (pgs. 632-633)

$$
(d s)^{2}=\left(c d t \sqrt{1-2 G M / r c^{2}}\right)^{2}-\left(\frac{d r}{\sqrt{1-2 G M / r c^{2}}}\right)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
$$

A satellite in circular orbit.

Assume:

- Circular orbit $\rightarrow d r=0$
- In plane where $d \phi=0$
- Moving at "specified angular speed" $\omega \rightarrow d \theta=\omega d t$

$$
\begin{gathered}
(d s)^{2}=\left[\left(c \sqrt{1-2 G M / r c^{2}}\right)^{2}-r^{2} \omega^{2}\right] d t^{2}=\left(c^{2}-\frac{2 G M}{r}-r^{2} \omega^{2}\right) d t^{2} \\
\Delta s=\int_{0}^{2 \pi / \omega} \sqrt{c^{2}-\frac{2 G M}{r}-r^{2} \omega^{2}} d t .
\end{gathered}
$$

Find r that makes Δs be an extremum:

$$
\begin{aligned}
& \frac{d}{d r}(\Delta s)=\frac{d}{d r}\left(\int_{0}^{2 \pi / \omega} \sqrt{c^{2}-\frac{2 G M}{r}-r^{2} \omega^{2}} d t\right)=0 \\
& \frac{d}{d r} \sqrt{c^{2}-\frac{2 G M}{r}-r^{2} \omega^{2}}=0 \\
& \frac{2 G M}{r^{2}}-2 r \omega^{2}=0 \\
& v=r \omega=\sqrt{\frac{G M}{r}} \quad \begin{array}{l}
\text { A familiar } \\
\text { Newtonian result! }
\end{array}
\end{aligned}
$$

Geodesics

Better Example: Conservation of Energy in Special Relativity

(see TW2, pp. 109-111). Metric is: $\quad \Delta s^{2}=\Delta t^{2}-\Delta x^{2}$
Simplify notation: Let $S_{A}=\Delta S$ between points $(0,0)$ and (t, x), etc.

$$
\begin{aligned}
& s_{A}^{2}=t^{2}-x^{2} \\
& s_{A}=\left(t^{2}-x^{2}\right)^{1 / 2} \\
& \frac{d s_{A}}{d t}=\frac{t}{\left(t^{2}-x^{2}\right)^{1 / 2}}=\frac{t_{A}}{s_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& s_{B}^{2}=(T-t)^{2}-(X-x)^{2} \\
& s_{B}=\left((T-t)^{2}-(X-x)^{2}\right)^{1 / 2} \\
& \frac{d s_{B}}{d t}=-\frac{(T-t)}{s_{B}}=-\frac{t_{B}}{s_{B}}
\end{aligned}
$$

$\frac{d s}{d t}=\frac{d s_{A}}{d t}+\frac{d s_{B}}{d t}=\frac{t_{A}}{s_{A}}-\frac{t_{B}}{s_{B}}=0 \quad$ Here is where we find the extremum!
$\frac{t_{A}}{s_{A}}=\frac{t_{B}}{s_{B}}=$ any $\frac{\Delta t}{\Delta s} \quad=$ constant of motion. Let's call it "energy/mass".
$E=m \Delta t / \Delta s=m d t / d s$
Similar argument to get momentum: $\quad p=m d x / d s$
Homework for next class - find definition of energy for Schwarzschild metric.

