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TW1, Fig. 1-19

Euclidean space:  
Straight line 

= shortest distance.

222 dxdtds −=

Space-time:  
Straight line 

= longest distance.

( ) 2/122 xts ∆−∆=∆( ) 2/122 yx ∆+∆=∆

l

World-Lines = path through space-time

s

Geodesics
• Light always follows null geodesic, with ∆s = ∆τ = 0
• In free-fall, world-line of objects with mass = extremum of ∫ds (= ∫dτ)

– Normally a maximum 
observer travelling on Geodesic sees max. time pass

Geodesics
Better Example: Conservation of Energy in Special Relativity

(see TW2, pp. 109-111).      Metric is:

E = m ∆t/∆s =m dt/ds
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Similar argument to get momentum: p = m dx/ds

= constant of motion. Let’s call it “energy/mass”.

Simplify notation: Let sA = ∆s between points (0,0) and (t, x), etc.
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=−=+= 0 Here is where we find the extremum!
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Homework for next class – find definition of energy for Schwarzschild metric.
s
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Find definition of 
energy for 
Schwarzschild 
metric:
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A handy little shortcut for 
doing this sort of derivative

The Answer

See TW2, pg. 3-7

rA

rB

Fixed
Positions

0

t

T

sA, tA

sB, tB

Falling into a Black Hole

Eq. of motion for freefall in 
Schw. Coords:

[CO 17.20]

Time (ms)

• Schw. conservation of energy: = 1         (E = m at r = ∞)
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s

0
• Schw. metric

s

In time units of free-
falling astronaut:

s s
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Orbits around 
black holes  
(from TW2)• Schw. conservation of energy:

• Schw. conservation of angular mom:

– Schwarzschild

s

s

s s

s

[TW2, Fig 4-13]

0       5       10         r/M 

1.04

0.94

L/m = 4.33M

4.0M

3.464M

• Effective potential
– Newtonian 

• Precession of perihelion
• Innermost stable orbit

[TW2, Fig 4-12]
1.04

0.94

V/m
or

E/m

Newtonian V/m + 1

Schw, V/m
for L/m = 4.0M

0        10        20     r/M 

E/m of spaceship

[TW2, Fig 4-5]
0.08

0.04

0

-0.04

-0.08

V/m
or

E/m

-(L/m)2/(2r2)

-M/r

Total Eff. Potential V/m

r/M 20 40

• Schw. metric s

Spinning Black Holes
Kerr metric (1963)

Maximal spin: Jmax = M2  (or = GM 2/c2 in CO units)

• Usually ~ the case.
• Then Event Horizon in equatorial plane is at r=M
Infalling particle with no angular momentum:

J = Angular Momentum

dφdτ cross term “frame dragging”

“Static limit”
Frame-dragging c

r = M+(M 2-a2)1/2

Ergosphere

r = 2M   

E/m

r/M

Remaining energy
(rest radiated away)

(unrealistic case with unstable 
orbits,  but gives an estimate 

of available energy)

where

Both plots for equatorial plane only

[TW2, pg. F-14]

[CO 17.22]

Notation:
No G, no c

φ
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In empty space:

Stolen from  Weinberg, 
“Gravitation & Cosmology”

Einstein’s eqn: K

Metric for flat space-time, spherical coords:

(

Non-zero 
components of 
Einstein Eqn:
Where: 
′ = d/dr
′′ = d 2/dr2

= 0

= 0

= 0

= 0

For spherical symmetry:

Unknown functions, allow space to be curved

s

Schwarzschild’s solution (1916):    

s

GR and Cosmology
• Robertson-Walker metric:

• Cosmological Principle requires the RW metric.
– RW is the only possible metric for a spherically symmetric homogeneously expanding 

or contracting space-time (Weinberg, pg. 403)
• e.g. it is also the appropriate metric for the interior of a homogeneously collapsing star.

• So then the free parameters in the metric are k and R(t).
• Energy momentum tensor must have the “perfect fluid” form:

where ρ and p are functions of t alone, and

• The non-zero components of the Einstein equation then reduce to 

Stolen from  Weinberg, 
“Gravitation & Cosmology”

R =

etc.

dR
dt

.

Back to Weinberg’s 
notation, without c2

[CO] notation, 
with c2

Friedmann eqn.[29.10]

Form of fluid eqn.[29.50]
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• R-W metric: most general solution for universe obeying Cosmological Principle.
– Homogeneous & Isotropic 
– Smooth distribution of matter.
– Same everywhere at any given time.

• Curvature

– Can be found from local measurements
• By bug on sphere 

Positive 
Curvature

(K > 0)

Negative Curvature
(K < 0)

Flat
(K = 0)

Curved Spaces & the Robertson-Walker Metric

)(2 tR
kK ≡

2
0

1
ℜ

≡k =ℜ0 Present radius of 
curvature (meters)

Defined 
incorrectly in 
10/21 notes.


