

Geodesics

- Light always follows null geodesic, with $\Delta s=\Delta \tau=0$
- In free-fall, world-line of objects with mass = extremum of $\int d s \quad\left(=\int d \tau\right)$
- Normally a maximum

$$
\rightarrow \text { observer travelling on Geodesic sees max. time pass } \quad \frac{d S}{d ?}=0
$$

Geodesics

Better Example: Conservation of Energy in Special Relativity

(see TW2, pp. 109-111). Metric is: $\quad \Delta s^{2}=\Delta t^{2}-\Delta x^{2}$
Simplify notation: Let $S_{A}=\Delta S$ between points $(0,0)$ and (t, x), etc.

$$
\begin{aligned}
& s_{A}^{2}=t^{2}-x^{2} \\
& s_{A}=\left(t^{2}-x^{2}\right)^{1 / 2} \\
& \frac{d s_{A}}{d t}=\frac{t}{\left(t^{2}-x^{2}\right)^{1 / 2}}=\frac{t_{A}}{s_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& s_{B}^{2}=(T-t)^{2}-(X-x)^{2} \\
& s_{B}=\left((T-t)^{2}-(X-x)^{2}\right)^{1 / 2} \\
& \frac{d s_{B}}{d t}=-\frac{(T-t)}{s_{B}}=-\frac{t_{B}}{s_{B}}
\end{aligned}
$$

$\frac{d s}{d t}=\frac{d s_{A}}{d t}+\frac{d s_{B}}{d t}=\frac{t_{A}}{s_{A}}-\frac{t_{B}}{s_{B}}=0 \quad$ Here is where we find the extremum!
$\frac{t_{A}}{s_{A}}=\frac{t_{B}}{s_{B}}=$ any $\frac{\Delta t}{\Delta s} \quad=$ constant of motion. Let's call it "energy/mass".

$$
E=m \Delta t / \Delta s=m d t / d s
$$

Similar argument to get momentum: $\quad p=m d x / d s$

Falling into a Black Hole

- Schw. conservation of energy:

$$
\frac{E}{m}=\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}=1 \quad(E=m \text { at } r=\infty)
$$

$$
\left(\frac{d t}{d s}\right)=\frac{1}{\left(1-\frac{2 M}{r}\right)}
$$

- Schw. metric

Eq. of motion for freefall in Schw. Coords:

$$
\frac{d r}{d t}=-\left(1-\frac{2 M}{r}\right)\left(\frac{2 M}{r}\right)^{1 / 2}
$$

In time units of freefalling astronaut:

$$
\frac{d r}{d s}=\frac{d r}{d t} \frac{d t}{d s}=-\left(\frac{2 M}{r}\right)^{1 / 2}
$$

- Schw. metric $d s^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)}-r^{2} d \phi^{2}$
- Schw. conservation of energy: $\frac{E}{m}=\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}$

Orbits around black holes

(from TW2)

- Schw. conservation of angular mom: $r^{2} \frac{d \phi}{d s}=$ constant $\frac{L}{m}=r^{2} \frac{d \phi}{d s}$
- Effective potential
- Newtonian
$\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}=\frac{E}{m}-\left[-\frac{M}{r}+\frac{(L / m)^{2}}{2 r^{2}}\right]$
$\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}=\frac{E}{m}-\frac{V(r)}{m}$

- Schwarzschild
$\left(\frac{d r}{d s}\right)^{2}=\left(\frac{E}{m}\right)^{2}-\left(1-\frac{2 M}{r}\right)\left[1+\frac{(L / m)^{2}}{r^{2}}\right]$
$\left(\frac{d r}{d s}\right)^{2}=\left(\frac{E}{m}\right)^{2}-\left(\frac{V}{m}\right)^{2}$
- Precession of perihelion
- Innermost stable orbit

Spinning Black Holes

Kerr metric (1963)

$$
d \phi d \tau \text { cross term } \rightarrow \text { "frame dragging" }
$$

$d s^{2}=-\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} d \phi d t+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}+\frac{2 M r a^{2} \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta d \phi^{2}$
where $a \equiv J / M, \quad \rho^{2} \equiv r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta \equiv r^{2}-2 M r+a^{2}$
$J=$ Angular Momentum

Maximal spin: $J_{\max }=M^{2}$ (or $=G M^{2} / c^{2}$ in CO units)

- Usually ~ the case.
- Then Event Horizon in equatorial plane is at $r=M$

Infalling particle with no angular momentum:

Metric for flat space-time, spherical coords:

$$
(d s)^{2}=(d t)^{2}-(d r)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
$$

Einstein's eqn: $\quad R_{\mu \nu}-g_{\mu \nu} K=-8 \pi G T_{\mu \nu}$
In empty space: $R_{\mu \nu}=0$
For spherical symmetry: $d s^{2}=B(r) d t^{2}-A(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$
Unknown functions, allow space to be curved

Non-zero components of
Einstein Eqn:
Where:

$$
'=d / d r
$$

$$
"=d^{2} / d r^{2}
$$

$$
\begin{array}{ll}
R_{r r}=\frac{B^{\prime \prime}(r)}{2 B(r)}-\frac{1}{4}\left(\frac{B^{\prime}(r)}{B(r)}\right)\left(\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)-\frac{1}{r}\left(\frac{A^{\prime}(r)}{A(r)}\right) & =0 \\
R_{\theta \theta}=-1+\frac{r}{2 A(r)}\left(-\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)+\frac{1}{A(r)} & =0 \\
R_{\varphi \varphi}=\sin ^{2} \theta R_{\theta \theta} & =0 \\
R_{t t}=-\frac{B^{\prime \prime}(r)}{2 A(r)}+\frac{1}{4}\left(\frac{B^{\prime}(r)}{A(r)}\right)\left(\frac{A^{\prime}(r)}{A(r)}+\frac{B^{\prime}(r)}{B(r)}\right)-\frac{1}{r}\left(\frac{B^{\prime}(r)}{A(r)}\right) & =0
\end{array}
$$

Schwarzschild's solution (1916):

$$
d s^{2}=\left[1-\frac{2 M G}{r}\right] d t^{2}-\left[1-\frac{2 M G}{r}\right]^{-1} d r^{2}-r^{2} d \theta-r^{2} \sin ^{2} \theta d \varphi^{2}
$$

GR and Cosmology

- Robertson-Walker metric:

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \omega^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
$$

- Cosmological Principle requires the RW metric.
- RW is the only possible metric for a spherically symmetric homogeneously expanding or contracting space-time (Weinberg, pg. 403)
- e.g. it is also the appropriate metric for the interior of a homogeneously collapsing star.
- So then the free parameters in the metric are k and $R(t)$.
- Energy momentum tensor must have the "perfect fluid" form:

$$
T_{\mu \nu}=p g_{\mu v}+(p+\rho) U_{\mu} U_{v}
$$

Back to Weinberg's notation, without c^{2}
where ρ and p are functions of t alone, and $U^{t}=1 \quad U^{i}=0$

- The non-zero components of the Einstein equation then reduce to

Curved Spaces \& the Robertson-Walker Metric

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
$$

- R-W metric: most general solution for universe obeying Cosmological Principle.
- Homogeneous \& Isotropic
- Smooth distribution of matter.
- Same everywhere at any given time.
- Curvature

- Can be found from local measurements
- By bug on sphere

POSITME CURYATURE
NEGATVE CURVATURE

Positive Curvature ($K>0$)

