Curved Spaces \& the Robertson-Walker Metric

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \omega^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
$$

- R-W metric: most general solution for universe obeying Cosmological Principle.
- Homogeneous \& Isotropic
- Smooth distribution of matter.
- Same everywhere at any given time.
- Curvature

- Can be found from local measurements
- By bug on sphere

Positive Curvature ($K>0$)

Negative Curvature ($K<0$)

Geometry of a 2D Spherical Surface

$$
\begin{array}{rlr}
r & =R \sin \theta \\
d r & =R \cos \theta d \theta \\
R d \theta=\frac{d r}{\cos \theta} & =\frac{R d r}{\sqrt{R^{2}-r^{2}}}=\frac{d r}{\sqrt{1-r^{2} / R^{2}}} \quad \Longrightarrow \quad(d \ell)^{2}=(d D)^{2}+(r d \phi)^{2}=(R d \theta)^{2} . \\
\left.\sqrt{1-r^{2} / R^{2}}\right)^{2}+(r d \phi)^{2}
\end{array}
$$

On Flat Surface

$$
K=\frac{1}{R^{2}} \rightleftharpoons(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \phi)^{2}
$$

Geometry of a 2D Spherical Surface

$$
\begin{aligned}
& r=R \sin \theta \\
& d r=R \cos \theta d \theta \quad(d \ell)^{2}=(d D)^{2}+(r d \phi)^{2}=(R d \theta)^{2}+(r d \phi)^{2} \\
& R d \theta=\frac{d r}{\cos \theta}=\frac{R d r}{\sqrt{R^{2}-r^{2}}}=\frac{d r}{\sqrt{1-r^{2} / R^{2}}} \Rightarrow(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-r^{2} / R^{2}}}\right)^{2}+(r d \phi)^{2} \\
& \text { To get R-W metric: } \\
& K=\frac{1}{R^{2}} \quad 乙 \quad(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \phi)^{2} \\
& (d \ell)^{2}=\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
\end{aligned}
$$

- Add time

$$
\begin{aligned}
& (d s)^{2}=(c d t)^{2}-\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2} \\
& (d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
\end{aligned}
$$

where $r(t)=R(t) \varpi \quad$ and $\quad K(t) \equiv \frac{k}{R^{2}(t)}$

Sneak Preview

Accelerating Universe

- Hubble's law:

$$
v(t)=H(t) r(t)
$$

- Lookback time $\boldsymbol{\rightarrow}$ for more distant objects, we measure $H(t)$ at earlier t.

- If gravity constantly slows expansion, expect larger H at earlier t.
- Late 1990s: Type Ia SNe showed $H(t)$ is currently increasing with time.

Flat Universe

- CMB fluctuations
- 1 part in 10^{5} amplitude
- COBE: angular resolution too low
- WMAP has higher angular resolution.
- Fluctuations have known physical size.

The Cosmological Constant

Einstein's Eqn:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=-8 \pi G T_{\mu \nu}
$$

One last possible term. $\Lambda=$ arbitrary constant.

The "complete"
Friedmann Eqn:

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

Λ acts as outward force:

$$
\text { Newtonian version: } \quad \frac{1}{2} m v^{2}-G \frac{M r m}{r}-\frac{1}{6} \Lambda m c^{2} r^{2}=-\frac{1}{2} m k c^{2} w^{2}
$$

Define a potential:

$$
U_{\Lambda} \equiv-\frac{1}{6} \Lambda m c^{2} r^{2} \quad \Longrightarrow \mathbf{F}_{\Lambda}=-\frac{\partial U_{\Lambda}}{\partial r} \hat{\mathbf{r}}=\frac{1}{3} \Lambda m c^{2} r \hat{\mathbf{r}}
$$

The acceleration
Eqn:

Equation of state [CO pp. 1161-1162]

- Relation between P, R and ρ

Define: $\quad \rho=\rho_{o} R^{-3(1+w)}$ Matter: $w=0 \quad \rho \propto R^{-3}$
Fluid eqn (29.50): $\quad \frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \quad \rightleftharpoons \quad$ Radiation: $w=1 / 3 \quad \rho \propto R^{-4}$
[29.52] $\quad P=w u=w \rho c^{2}$
Cosm, Const: $w=-1 \quad \rho \propto R^{0}$
Cosmological Constant as a "Negative Pressure"
Friedmann Eq. with Cosmological Constant:
$\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}$
$\rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=$ constant $=\rho_{\Lambda, 0} \Rightarrow\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{\mathrm{rel}}+\rho_{\Lambda}\right)\right] R^{2}=-k c^{2}$
[29.111]

$$
\frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \Rightarrow \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\mathrm{rel}}+\frac{3\left(P_{m}+P_{\mathrm{rel}}\right)}{c^{2}}\right]+\frac{1}{3} \Lambda c^{2}\right\} R
$$

Negative pressure (29.115)

$$
\Rightarrow \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\mathrm{rel}}+\rho_{\Lambda}+\frac{3\left(P_{m}+P_{\mathrm{rel}}+P_{\Lambda}\right)}{c^{2}}\right]\right\} R
$$

A slight renaming....

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

A slight renaming....

$$
\begin{gather*}
{\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}} \tag{tabular}\\
\rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=\text { constant }=\rho_{\Lambda, 0} \\
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2} \\
\Omega_{\Lambda}=\frac{\rho_{\Lambda}}{\rho_{c}}=\frac{\Lambda c^{2}}{3 H^{2}}
\end{gather*}
$$

[29.113]
[29.9]
$\Omega \equiv \Omega_{m}+\Omega_{\mathrm{rel}}+\Omega_{\Lambda}$
$\left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2}$
\pm

$$
H^{2}(1-\Omega) R^{2}=-k c^{2}
$$

Friedmann Eqn

$$
\begin{equation*}
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2} \tag{tabular}
\end{equation*}
$$

$$
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}
$$

\square

The basic WMAP result: $k=0$

$$
\left[\Omega_{0}\right]_{\mathrm{WMAP}}=1.02 \pm 0.02
$$

$$
\Omega_{0}=\Omega_{m, 0}+\Omega_{\mathrm{rel}, 0}+\Omega_{\Lambda, 0}=1
$$

$$
\left[\Omega_{m, 0}\right]_{\mathrm{WMAP}}=0.27 \pm 0.04
$$

$$
\Omega_{\mathrm{rel}, 0}=8.24 \times 10^{-5}
$$

$$
\left[\Omega_{\Lambda, 0}\right]_{\mathrm{WMAP}}=0.73 \pm 0.04
$$

Still another form of Friedmann Eqn:

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2}
$$

Solution for $k=0$:

$$
t=\sqrt{\frac{3}{8 \pi G}} \int_{0}^{R} \frac{R^{\prime} d R^{\prime}}{\sqrt{\rho_{m, 0} R^{\prime}+\rho_{\mathrm{rel}, 0}+\rho_{\Lambda, 0} R^{\prime 4}}}
$$

$$
\begin{aligned}
& \left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \quad \text { Some Universes } \\
& H^{2}(1-\Omega) R^{2}=-k c^{2} \\
& H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}
\end{aligned}
$$

Open vs. Closed:
Open vs. Closed:
$k=0 \rightarrow \Omega_{0}=\Omega_{m, 0}+\$_{\mathrm{rel}, 0}+\Omega_{\Lambda, 0}=1$
Accelerating vs. Decelerating:

$$
q(t)=-\frac{R(t)\left[d^{2} R(t) / d t^{2}\right]}{[d R(t) / d t]^{2}}
$$

For $\Lambda=0$:

$$
\begin{aligned}
& =\frac{1}{2} \Omega(t) \\
q_{0} & =\frac{1}{2} \Omega_{0}
\end{aligned}
$$

Deceleration parameter

For $\Lambda \neq 0$: $\quad q(t)=\frac{1}{2} \sum_{i}\left(1+3 w_{i}\right) \Omega_{i}(t)$

For $\Lambda=0:$	
q_{o}	$=0 \quad$ empty
<0.5	open
$=0.5$	flat
	>0.5
	closed

$$
q(t)=\frac{1}{2} \Omega_{m}(t)+\Omega_{\mathrm{rel}}^{\sim}(t)-\Omega_{\Lambda}(t) .
$$

Expands Forever vs. Recollapses:
Does $d R / d t$ ever $=0$?
See [29.135]

