Equation of state [CO pp. 1161-1162]

- Relation between P, R and ρ

Define: $\quad \rho=\rho_{o} R^{-3(1+w)}$ Matter: $w=0 \quad \rho \propto R^{-3}$
Fluid eqn (29.50): $\quad \frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \quad \neg \quad$ Radiation: $w=1 / 3 \quad \rho \propto R^{-4}$
[29.52] $\quad P=w u=w \rho c^{2}$
Cosm, Const: $w=-1 \quad \rho \propto R^{0}$
Cosmological Constant as a "Negative Pressure"
Friedmann Eq. with Cosmological Constant:
$\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}$
$\rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=$ constant $=\rho_{\Lambda, 0} \Rightarrow\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{\mathrm{rel}}+\rho_{\Lambda}\right)\right] R^{2}=-k c^{2}$
[29.111]

$$
\frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \rightleftharpoons \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\text {rel }}+\frac{3\left(P_{m}+P_{\text {rel }}\right)}{c^{2}}\right]+\frac{1}{3} \Lambda c^{2}\right\} R_{0}
$$

Psst... is it a constant? $\quad P=w u=w \rho c^{2}$ Is w really $-1 ? \quad\left[\rho_{m}+2 \rho_{\text {rel }}-2 \rho_{\Lambda}\right]$

A slight renaming....

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

A slight renaming....

$$
\begin{gather*}
{\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}} \tag{tabular}\\
\rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=\text { constant }=\rho_{\Lambda, 0} \\
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2} \\
\Omega_{\Lambda}=\frac{\rho_{\Lambda}}{\rho_{c}}=\frac{\Lambda c^{2}}{3 H^{2}}
\end{gather*}
$$

[29.113]
[29.9]
$\Omega \equiv \Omega_{m}+\Omega_{\mathrm{rel}}+\Omega_{\Lambda}$
$\left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2}$
\pm

$$
H^{2}(1-\Omega) R^{2}=-k c^{2}
$$

Friedmann Eqn

$$
\begin{equation*}
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2} \tag{tabular}
\end{equation*}
$$

$$
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}
$$

\square

The basic WMAP result: $k=0$

$$
\left[\Omega_{0}\right]_{\mathrm{WMAP}}=1.02 \pm 0.02
$$

$$
\Omega_{0}=\Omega_{m, 0}+\Omega_{\mathrm{rel}, 0}+\Omega_{\Lambda, 0}=1
$$

$$
\left[\Omega_{m, 0}\right]_{\mathrm{WMAP}}=0.27 \pm 0.04
$$

$$
\Omega_{\mathrm{rel}, 0}=8.24 \times 10^{-5}
$$

$$
\left[\Omega_{\Lambda, 0}\right]_{\mathrm{WMAP}}=0.73 \pm 0.04
$$

Still another form of Friedmann Eqn:

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2}
$$

Solution for $k=0$:

$$
t=\sqrt{\frac{3}{8 \pi G}} \int_{0}^{R} \frac{R^{\prime} d R^{\prime}}{\sqrt{\rho_{m, 0} R^{\prime}+\rho_{\mathrm{rel}, 0}+\rho_{\Lambda, 0} R^{\prime 4}}}
$$

$$
\begin{aligned}
& \left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \quad \text { Some Universes } \\
& H^{2}(1-\Omega) R^{2}=-k c^{2} \\
& H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}
\end{aligned}
$$

Open vs. Closed:

Accelerating vs. Decelerating:

For $\Lambda \neq 0: \quad q(t)=\frac{1}{2} \sum_{i}\left(1+3 w_{i}\right) \Omega_{i}(t)$
$q(t)=\frac{1}{2} \Omega_{m}(t)+\int_{\mathrm{rel}}^{\sim}(t)-\Omega_{\Lambda}(t)$.
Expands Forever vs. Recollapses:
Does $d R / d t$ ever $=0$?
See [29.135]

[29.4] Observational Cosmology
$(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d w}{\sqrt{1-k w^{2}}}\right)^{2}+(w d \theta)^{2}+(w \sin \theta d \phi)^{2}\right]$

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} A c^{2}\right] R^{2}=-k c^{2} \quad \begin{aligned}
& \text { But what can we actually } \\
& \text { measure that will tell us W }
\end{aligned}
$$

$$
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}
$$

- Some theoretical parameter sets:
- $\quad R(t)$ vs. t
- $\Omega_{\Lambda, \mathrm{o}}$ vs. $\Omega_{m, o}$
- Curvature $k, d R / d t, d^{2} R / d t^{2}$ measure that will tell us which universe we live in?
As a function of z :
- Apparent mag. of standard candles.
- Angular sizes.
- Space density of galaxies.

Redshift and Cosmological Time Dilation

(See pg. 1200)

$$
(d s)^{2}=0=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+\cdots\right.
$$

For two radially travelling wave crests:

Both red paths are comoving distance ω_{e} long.

$$
\begin{aligned}
& \int_{t_{e}}^{t_{0}} \frac{d t}{R(t)}= \frac{1}{c} \int_{0}^{\sigma_{e}} \frac{d \sigma}{\sqrt{1-k \sigma^{2}}}=\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{d t}{R(t)} \\
& \int_{t_{0}}^{t_{0}+\Delta t_{0}} \frac{d t}{R(t)}=\int_{t_{e}}^{t_{e}+\Delta t_{e}} \frac{d t}{R(t)} \\
& \frac{\Delta t_{e}}{R\left(t_{e}\right)}=\frac{\Delta t_{0}}{R\left(t_{0}\right)} \\
& \frac{R\left(t_{0}\right)}{R\left(t_{e}\right)}=\frac{\Delta t_{0}}{\Delta t_{e}} \\
& \frac{1}{R\left(t_{e}\right)}=\frac{\lambda_{0}}{\lambda_{e}}=1+z \quad \text { [CO 29.142] }
\end{aligned}
$$

Proper distance
 $=$ the current distance to a distant object.

$$
\begin{gathered}
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \varpi^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right] \\
d t=0, \text { proper distance } d_{p}(t)=\operatorname{sqrt}\left(-d s^{2}\right) \\
d_{p}(t)=R(t) \int_{0}^{\pi} \frac{d \varpi^{\prime}}{\sqrt{1-k \sigma^{\prime 2}}}
\end{gathered}
$$

Flat: $\quad d_{p, 0}=m$
Closed: $\quad d_{p, 0}=\frac{1}{\sqrt{k}} \sin ^{-1}(\varpi \sqrt{k})$
Open: $\quad d_{p, 0}=\frac{1}{\sqrt{|k|}} \sinh ^{-1}(\varpi \sqrt{|k|})$

The particle horizon
Horizon distance $=$ distance a photon has traveled since $t=0$.

$$
\begin{gathered}
\int_{t 1}^{t 2} \frac{c d t}{R(t)}=-\int_{\pi 1}^{\pi 2} \frac{d \varpi}{\sqrt{1-k \varpi^{2}}}=\int_{\pi 2}^{\pi 1} \frac{d \varpi}{\sqrt{1-k \varpi^{2}}} \\
d_{p}(t)=R(t) \int_{0}^{\pi} \frac{d \varpi^{\prime}}{\sqrt{1-k \sigma^{\prime 2}}}=R(t) \int_{t_{e}}^{t_{0}} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
\end{gathered}
$$

$$
d_{h}(t)=R(t) \int_{0}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

Radiation dominated flat universe: $R \propto t^{1 / 2} \rightarrow d_{h}(t)=2 c t$
Matter dominated flat universe: $R \propto t^{2 / 3} \rightarrow d_{h}(t)=3 c t$
Matter dominated flat universe in terms of redshift $\rightarrow \quad d_{h}(z)=\frac{2 c}{H_{0} \sqrt{\Omega_{m, 0}}} \frac{1}{(1+z)^{3 / 2}}$

$$
\begin{aligned}
\text { Including } \Omega_{\Lambda} \rightarrow d_{h}(t) & =\left(\frac{\Omega_{m, 0}}{\Omega_{\Lambda, 0}}\right)^{1 / 3} \sinh ^{2 / 3}\left(\frac{3}{2} H_{0} t \sqrt{\Omega_{\Lambda, 0}}\right) \int_{0}^{t} \frac{c d t^{\prime}}{\left(\frac{\Omega_{m, 0}}{\Omega_{\Lambda .0}}\right)^{1 / 3} \sinh ^{2 / 3}\left(\frac{3}{2} H_{0} t^{\prime} \sqrt{\Omega_{\Lambda, 0}}\right)} \\
& =14.6 \mathrm{Gpc}(\mathrm{WMAP})
\end{aligned}
$$

The paths of photons in terms of proper distance.

$$
(d y)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \omega}{\sqrt{1-k \omega^{2}}}\right)^{2}+(\omega \mu t)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
$$

Matter dominated flat universe:

$$
\begin{gathered}
\int_{0}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}=\int_{\varpi}^{\omega_{e}} d \varpi^{\prime} \\
R(t)=\left(\frac{3}{2}\right)^{\frac{2}{3}}\left(\frac{t}{t_{H}}\right)^{\frac{2}{3}}=\left(\frac{t}{t_{0}}\right)^{\frac{2}{3}} \\
\varpi=\varpi_{e}-3 c t_{0}\left(\frac{t}{t_{0}}\right)^{1 / 3}
\end{gathered}
$$

$$
\text { At } t=t_{o}, \varpi=0 \rightarrow \varpi_{e}=3 c t_{0}
$$

Proper distance:

$$
R(t) \varpi=d_{p}(t)=3 c t_{0}\left[\left(\frac{t}{t_{0}}\right)^{2 / 3}-\left(\frac{t}{t_{0}}\right)\right]
$$

