Angular Diameters

RW metric:

$(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \pi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\pi d \theta)^{2}+(\sigma \sin \theta d \phi)^{2}\right]$
What is angular size of galaxy at co-moving distance ϖ ?

$$
d t=d \varpi=d \phi=0
$$

Galaxy's diameter is proper distance linear diameter:

Using ϖ coordinate

$$
D=\int \sqrt{-(d s)^{2}}=R\left(t_{e}\right) \tilde{\omega}_{e} \theta
$$

\rightarrow Looks like

$$
\lambda \theta=\frac{D}{R(t)} \tilde{\omega} \quad \text { but must use } R\left(t_{e}\right)
$$ regardless of

$$
=\frac{D(1+z)}{\tilde{\omega}} \text { using } 1+z=\frac{1}{R\left(t_{e}\right)}
$$

$$
\theta=\frac{D(1+z)^{2}}{d_{L}}
$$

$\theta=\frac{D(1+z)^{2}}{d_{1}} \quad$ More angular diameter

In practice
(because of that @\#\$\% cosmological constant)

$$
\frac{c \theta}{H_{0} D}=\frac{(1+z)}{S(z)}
$$

For $\Lambda=0$:

$$
\theta=\frac{H_{0} D}{c} \frac{q_{0}^{2}(1+z)^{2}}{q_{0} z-\left(1-q_{0}\right)\left(\sqrt{1+2 q_{0} z}-1\right)}
$$

Surprise!
Even for flat, $\Lambda=0$ universe, θ first decreases but then increases with increasing z .

Expecting

- Distance
- Expansion

Big Bang Nucleosynthesis (Oct. 14 lecture)

$\Omega_{\text {Baryons }}$

- d, ${ }^{7} \mathrm{Li},{ }^{3} \mathrm{He} \boldsymbol{\rightarrow}$

$$
\Omega_{\mathrm{B}}=\frac{\rho_{\mathrm{B}, \mathrm{o}}}{\rho_{\mathrm{c}, \mathrm{o}}}=0.02-0.05
$$

- But better determination now from CMB fluctuations (WMAP)

$$
\Omega_{\mathrm{B}}=0.044
$$

Definitions, results, etc. $\begin{array}{ll} * & r=R(t) \pi \\ * & H=\frac{1}{R} \frac{d R}{d t} \\ \hline \end{array}$ Densities: * Matter: $\rho_{m}=\rho_{o, m} R^{-3}$ * Radiation: $\rho_{r}=\rho_{o, r} R^{-4}$ * Dark energy: $\rho_{\mathrm{A}}=\rho_{o, \Lambda} R^{0}$ $\begin{gathered} \rho_{\mathrm{c}}(t)=\frac{3 H^{2}(t)}{8 \pi G} \\ * \Omega_{(t)}=\frac{\rho(t)}{\rho_{c}(t)} \\ * \quad \Omega \equiv \Omega_{m}+\Omega_{\mathrm{rl}}+\Omega_{\Lambda} \end{gathered}$	Physics Per unit mass: $\rho=\frac{u}{c^{2}} * \begin{gathered} \text { K.E. + potential E. }=\text { Total Energy } \\ \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \end{gathered}$ * Temp. of radiation field: $T_{0}=R T\left(R_{\text {, }}\right.$ $\begin{aligned} &(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right. \\ & * {\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2} } \end{aligned}$
$\begin{aligned} & \frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \\ & q(t)=- \frac{R(t)\left[d^{2} R(t) / d t^{2}\right]}{[d R(t) / d t]^{2}} \\ & * P=w u=w \rho c^{2} \end{aligned}$	$\begin{aligned} & \quad \begin{array}{c} \begin{array}{c} \text { Cosmological Constant } \\ \text { (a.k.a. Dark Energy) } \end{array} \\ \\ \frac{d^{2} R}{d t^{2}}=\{-P d V \\ c^{2} \end{array} \quad \text { Curvature } k=\frac{1}{\mathfrak{R}^{2}} \mathrm{x} \begin{array}{r} +1 \\ 0 \\ -1 \end{array} \\ & \left.c^{2} \pi G\left[\rho_{m}+\rho_{\text {rel }}+\rho_{\Lambda}+\frac{3\left(P_{m}+P_{\text {rel }}+P_{\Lambda}\right)}{}\right]\right\} R \end{aligned}$ * = you should be able to write these down from memory.

