The Simplest Picture of Galaxy Formation and Why It Fails
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In an expanding universe, will a cloud collapse?
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Q.When do the oscillations start?

2K < -U
When Pressure support < gravity
Particle horizon = 4,
X -
’ Size scale for mass M Radiation pressure
has disappeared.
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Radiation pressure collapse.
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Fourier analyze WMAP image:

+ Measures “Power” for each size scale 0.
* = Power for each mass scale M.
But why more power for some mass scales

What is
measured?
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Fourier analyze WMAP image:
*  Measures “Power” for each size scale 6.
¢ = Power for each mass scale M.

*  But why more power for some mass scales
than others?

(9plp )Dark Matter \/_\/\

e All blobs of same mass M oscillate
synchronously.

e Peaks are for mass scales that are either
fully compressed or fully rarified.

(9P )saryons

Baryons: Shorter spatial wavelengths oscillate with higher time frequency
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First peak:

Size of “acoustic horizon”
r=vg (tDecoupIing - tHorizon) = C/j t
= linear size of perturbation

0 =r/y(d)

x =sin(d), d, sinh(d)
Ipeak =220/Q,Y2 (1= multipole )
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Boomerang balloon flight (1999)

Mapped Cosmic Background
Radiation with far higher angular
resolution than previously
available.
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Launch near Mt. Erebus
in Antarctica

Boomerang

Position of 1t peak measures curvature
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Cosmological Constant

Q, =

The “Concordance” Cosmology (or ACDM)

Type la Supernovae as “standard candles”
=>» accelerating expansion
29,=Q.,/2-Q,

CMB anisotropy = Q. = Qn + Q4 Another independent measure:
Can solve for Q,,, Q, Rate of galaxy cluster evolution
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