

A large sample of galaxies

- SDSS (Sloan Digital Sky Survey)
- 10^{6} targets, mostly galaxies,
- selected for spectroscopy
- 10^{4} deg 2 of sky
- $\mathrm{m}_{\mathrm{r}}<17.8 \mathrm{mag}$
- 115,000 SDSS galaxies:

Surface Brightness \rightarrow Form
 Why????

The Role of AGN in Galaxy Formation

- All massive galaxies contain massive black holes.
- $\mathrm{M}_{\text {Black Hole }} \propto \mathrm{M}_{\text {Bulge }}$
\rightarrow cause \& effect
- AGN feedback
- Mass accretion rate is governed by
- radiation pressure (Eddington limit)
- and/or energy in jets/winds.
- Limits size of galaxy.
- Also operates on scale of galaxy cluster.

The Cooling Flow Problem

Bremsstrahlung emission from X-ray emitting gas in clusters and E galaxies:

$$
\begin{aligned}
& \mathcal{L}_{\text {vol }} \propto n_{e}^{2} T^{1 / 2} \\
& t_{\text {cool }}=\frac{3 n_{e} k T}{\mathcal{L}_{\text {vol }}} \propto \frac{T^{1 / 2}}{n_{e}}
\end{aligned}
$$

Coma cluster homework problem:
$T_{e}=7 \times 10^{7} \mathrm{~K}$ and $R=1.5 \mathrm{Mpc}$
$\rightarrow n_{e}=5.5 \times 10^{-5} \mathrm{~cm}^{-3, t}{ }_{\text {cool }}=10^{12} \mathrm{yrs}$.

- Dense central regions should cool rapidly $\quad\left(t_{\text {cool }}<1 \mathrm{Gyr}\right)$.
- Should cause inward mass flow
- Some is observed
- cD galaxies at cluster centers.
- But not nearly enough inflow is observed.

Abell 478 galaxy cluster

The Cooling Flow Problem

The Solution:

AGN feedback heats gas.

- on both galaxy \& cluster scales.

- Dense central regions should cool rapidly $\quad\left(t_{\text {cool }}<1 \mathrm{Gyr}\right.$).
- Should cause inward mass flow
- Some is observed
- cD galaxies at cluster centers.
- But not nearly enough inflow is observed.

Basic idea behind galaxy formation objects start small and grow by merging.

We see:

- Smaller galaxies back when $t \sim$ 1-7 Gyr. (with caveats)
- Increase in space density of large galaxies since $t \sim 7 \mathrm{Gyr}$ $=1 / 2$ current age. (with caveats)
- Lower Spiral/Elliptical ratio in cluster centers.
- Mergers.

But...

- Not enough very low-mass galaxies at current time \rightarrow SN winds??
- Many E galaxies ended star formation by $t \sim 7$ Gyr \rightarrow AGN feedback.

Formation of the Milky Way

Thick Disk

- ~10 Gyr old
- moderately low Z (metallicity)

Stellar Halo

- elongated orbits
- 11-13 Gyr old - horizontal branch
- very low Z
(metallicity)
- elongated orbits
$\cdot 0.3 \times 10^{10} \mathrm{M}_{\text {sun }}$
- solar Z
- circular orbits
- $6 \times 10^{10} \mathrm{M}_{\text {sun }}$

Nuclear Bulge

- 0.2-10 Gyr old - age-flatness correlation
- high Z (metallicity)
- elongated orbits
- but much smaller than for halo stars
- $1 \times 10^{10} \mathrm{M}_{\text {sun }}$

