### **AST 308**

# **Galaxies & Cosmology**

Fall 2009 MWF 3:00–3:50, Room 287 Chem

# SOME MAJOR RESEARCH THEMES IN GALACTIC & EXTRAGALACTIC ASTRONOMY

- Cosmology and dark energy.
- Nature of dark matter.
- Formation of structure.
- Evolution of galaxies.
- Production of the chemical elements.

**Instructor:** Jack Baldwin

(baldwin@pa.msu.edu), Room 3270 BPS, phone (517) 884-5611

Office Hours: Regular office hours are Mo 11-12, Th 1-2. Or catch me in my office whenever you

can... I'm usually there from 9AM – 5 PM, except Wed 11:30-3:00.

**Textbook:** Carroll & Ostlie, An Introduction to Modern Astrophysics, 2<sup>nd</sup> edition.

### Some Websites to bookmark:

Course website: www.pa.msu.edu/courses/ast308

Most lecture slides will be posted here, either just before or just after the lecture.

### Some other important web sites (you can copy these links from course website)

ADS abstract service: http://adsabs.harvard.edu/abstract\_service.html

ArXiv astro-ph eprint archive: http://xxx.lanl.gov/form/astro-ph?MULTI=form+interface

SIMBAD database: <a href="http://simbad.u-strasbg.fr/simbad">http://simbad.u-strasbg.fr/simbad</a>
NED database: <a href="http://nedwww.ipac.caltech.edu/index.html">http://nedwww.ipac.caltech.edu/index.html</a>

HST Digitized Sky Survey: http://archive.stsci.edu/cgi-bin/dss form

Ned Wright's Javascript Cosmology Calculator: http://www.astro.ucla.edu/~wright/CosmoCalc.html

### **Grading:**

Homework: 20% 2 midterms: 25% each Final: 30%

The final is over the whole course, but it will be strongly weighted to the material after Midterm 2. It will be on Monday, Dec 14 at 3PM.

# **AST308 COURSE OUTLINE**

### Subject to change at any moment

- Numbers in square brackets [25.1], etc. refer to sections in Carroll & Ostlie, 2nd ed., which you are always responsible for reading.
- *Italicized* topics are mostly add-ons not covered in the textbook. I'll hand out notes.

| Week         | Topic                                                                                    |
|--------------|------------------------------------------------------------------------------------------|
| Sept 2       | Course Introduction: The Big Picture                                                     |
| Sept 4       | Curtis-Shapley debate, Hubble classification [25.1]                                      |
| Mon Sept 7   | Labor Day                                                                                |
| •            | The Milky Way Galaxy                                                                     |
| Sept 9       | MW Morphology (history/dust/components) [24.1, 24.2]                                     |
| Sept 11      | Stellar populations and chemical enrichment                                              |
| Sept 14      | Star-forming regions; the Orion Nebula                                                   |
| Sept 16      | Kinematics, Oort's constants (but not dark matter) [24.3]                                |
| Sept 18      | (Dr. Smith) Galactic distance scale. [24.3] SKIP [24.4]                                  |
|              | The Nature of Galaxies                                                                   |
| Sept 21      | Spiral & Irr galaxies; rotation curves → dark matter; Tully-Fisher Relation [25.2]       |
| Sept 23      | Spiral structure, density waves [25.3]                                                   |
| Sept 25      | Spiral structure, density waves [25.3]                                                   |
| Sept 28      | E galaxies; types, triaxial structures & orbits; Faber-Jackson; Fundamental plane [25.4] |
| Sept 30      | Distribution of galaxy types, Schecter luminosity function, L* galaxies.                 |
| Fri Oct 2    | Midterm 1                                                                                |
|              | Cosmology                                                                                |
| Oct 5,7,9    | [27.1] The extragalactic distance scale                                                  |
|              | [27.2] The Expansion of the Universe                                                     |
|              | [29.1] Newtonian Cosmology                                                               |
|              | [29.2] The Cosmic Microwave Background                                                   |
| Oct 12,14,16 | [17] General Relativity and Black Holes                                                  |
| Oct 19,21,23 | [29.3] Relativistic Cosmology                                                            |
| Oct 26,28,30 | [29.4] Observational Cosmology                                                           |
| Nov 2,4      | [30.1] The very early universe and inflation                                             |
| Fri Nov 6    | Midterm 2                                                                                |
| Week 11:     | The Structure of the Universe & Evolution of Galaxies                                    |
| Nov 9,11,13  | [27.3] Clusters of galaxies                                                              |
|              | [28.4] Using quasars to probe the universe (grav. lenses)                                |
|              | What is dark matter?                                                                     |
| Nov 16,18,20 | [30.2] The origin of structure; WMAP measurements.                                       |
| Nov 23,25    | [26.1] Interaction of galaxies                                                           |
| Fri Nov 27   | Thanksgiving Holiday                                                                     |
| Nov 30,      | [26.2] The formation of galaxies                                                         |
| Dec 2,4      |                                                                                          |
| Dec 7,9,11   | Quasars & Active galactic Nuclei (AGN)                                                   |
|              | [28.2] Unified model of AGN (Skip [28.1], [28.3])                                        |
|              | [18.2] Accretion Disk description pp. 661-666                                            |
|              | [24.4] The Galactic Center                                                               |
| Mon Dec 14   | Final Exam 3–5PM                                                                         |

## **Prerequisites:**

AST 208 and PHY 215 (thermo) *and* (PHY 321=class. mech. or concurrently). *Meaning you should also have taken:* 

**AST 207** 

PHY 183 or similar mechanics course; and

PHY 184 or similar E&M course; and

Math 132+133+234 or similar calculus + line & surface integrals sequence.

# → Things I Think You Already Know:

### **Physics**

- Classical mechanics at the level of Newton's laws, energy and angular momentum conservation, and basic problem solving using them.
- Light [3]
  - $\circ$  E=hv= hc/ $\lambda$
  - $\circ$  F=L/(4 $\pi$ r<sup>2</sup>)
  - o Black body radiation [CO 3.4,3.5]
- Basic idea of Special Relativity [CO 4]
  - o [CO 4.3] is a useful catalogue of some S.R. effects that are relevant in astronomy.
- Bohr model of the atom [CO 5.3]
  - o What atomic energy levels are.

### Math

• Calculus, able to solve simple differential equations as used in physics problems.

#### **Astronomy**

- Apparent and absolute magnitude scales [3.2]
- What UBV photometry is
- Basic idea of the Hertzprung-Russell diagram
  - o Something about age-dating clusters using H-R diagram
- Stellar spectral types OBAFGKM

Thumb through CO chapters [3], [4], [5] and make sure that it all looks familiar. If not, take the time to read it carefully.

### **Senior Thesis**

- 2 options
  - Review paper to satisfy capstone writing requirement, based on reading many scientific papers.
  - o Or... research project, plus paper about it to satisfy capstone writing requirement.
- Most students should *NOT* undertake a research project.
  - Concentrating on getting better grades will help you more.

#### **OBSERVATIONAL FACULTY**

Baldwin: H II regions; QSOs.
Beers: Oldest stars in Milky Way
Donahue: Clusters of galaxies
Loh: Instrumentation; cosmology
Smith: Variable stars, MW structure
Zepf: Galaxy formation; globular clusters.

#### THEORY FACULTY

Brown: SN explosions, compact objects. O'Shea: Star & galaxy formation. Voit: Galaxy clusters; cosmology.

- Doing a research project requires you to find a professor who can supervise you.
- To do either type of senior thesis this year:
  - o Prof. Smith must sign off on topic/supervisor choice. TALK TO HIM NOW!

## **Getting into Grad School**

- Grad school does not *have* to immediately follow your B.S. degree.
  - o Going off and working for a while is sometimes a good idea.
- You should receive full financial support, if they actually want you.
  - Think twice before taking out that 5<sup>th</sup> student loan.

- Get advice early, from at least two astro profs.
- Bring your transcript.
- Many grad schools start evaluating applications in January, despite having later deadlines.
- You usually can *NOT* start in January, or at least get any funding at that point.
- Admissions committees consider:
  - Overall GPA
  - o GPA in upper division Physics & Astro courses.
  - GRE scores
  - o GRE Physics subject exam
  - o Letters of recommendation

- You can take these more than once and use the highest score.
- So take them early, just in case.
- What does it take to get admitted (my best guess):
  - o To get into a top-10 astronomy program:
    - 4.0 GPA or close
    - Strong GRE scores
    - Great letters
    - o To squeak into a reputable PhD program
      - 3.2 GPA
      - No more than 1-2 grades below 3.0 in upper division Physics & Astro courses.
      - GRE
        - Verbal: 60<sup>th</sup> %tile is pretty average.
        - Math: most applicants have at least 75-80<sup>th</sup> %tile.
        - Physics subject exam: at least in 500's; 600+ much better

Probably will get you admitted to 1 program, if you apply to 6 of top-10. But also apply to a couple of fallback schools.

Apply to a wide range of schools (6 or more).