
How to Think Like a

(Python) Programmer

Version 0.9.10

ii

How to Think Like a

(Python) Programmer

Version 0.9.10

Allen Downey

Green Tea Press

Needham, Massachusetts

Copyright c© 2007 Allen Downey.

Printing history:

April 2002: First edition of How to Think Like a Computer Scientist.

August 2007: Major revision, changed title to How to Think Like a (Python) Pro-
grammer.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and with no Back-Cover Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX source has
the effect of generating a device-independent representation of a textbook, which can
be converted to other formats and printed.

The LATEX source for this book is available from http://www.thinkpython.com

Preface

The strange history of this book

In January 1999 I was preparing to teach an introductory programming class in
Java. I had taught it three times and I was getting frustrated. The failure rate
in the class was too high and even for students who succeeded, the overall level
of achievement was too low.

One of the problems I saw was the books. I had tried three different books
(and read a dozen more), and they all had the same problems. They were too
big, with too much unnecessary detail about Java, and not enough high-level
guidance about how to program. And they all suffered from the trap door
effect: they would start out very gradual and easy, and then somewhere around
Chapter 5, the bottom would fall out. The students would get too much new
material, too fast, and I would spend the rest of the semester picking up the
pieces.

Two weeks before the first day of classes, I decided to write my own book. I
wrote one 10-page chapter a day for 13 days. I made some revisions on Day 14
and then sent it out to be photocopied.

My goals were:

• Keep it short. It is better for students to read 10 pages than not read 50
pages.

• Be careful with vocabulary. I tried to minimize the jargon and define each
term at first use.

• Build gradually. To avoid trap doors, I took the most difficult topics and
split them into a series of small steps.

• It’s not about the language; it’s about programming. I included the minu-
mum useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

vi Chapter 0. Preface

My first version was rough, but it worked. Students did the reading, and they
understood enough that I could spend class time on the hard topics, the inter-
esting topics and (most important) letting the students practice.

As a user and advocate of free software, I believe in the idea Benjamin Franklin
expressed:

“As we enjoy great Advantages from the Inventions of others, we
should be glad of an Opportunity to serve others by any Invention
of ours, and this we should do freely and generously.”

So I released the book under the GNU Free Documenation License, which allows
users to copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in
Virginia, adopted my book and translated it into Python. He sent me a copy of
his translation, and I had the unusual experience of learning Python by reading
my own book.

Jeff and I revised the book, incorporated a case study by Chris Meyers, and
released How to Think Like a Computer Scientist: Learning with Python, also
under the GNU Free Documenation License.

At the same time, my wife and I started Green Tea Press, which distributes
several of my books electronically, and sells How to Think in hard copy.

I have been teaching with this book for more than five years now, and I have
done a lot more Python programming. I still like the structure of the book, but
for some time I have felt the need to make changes:

• Some of the examples in the first edition work better than others. In
my classes I have discarded the less effective ones and developed improve-
ments.

• There are only a few exercises in the first edition. Now I have five years
of quizzes, exams and homeworks to choose from.

• I have been programming in Python for a while now and have a better ap-
preciation of idiomatic Python. The book is still about programming, not
Python, but now I think the book gets more leverage from the language.

At the same time, Jeff has been working on his own second edition, customized
for his classes. Rather than cram everything into one book (which may be
how other books got so big), we decided to work on different versions. They are
both under the Free Documentation License, so users can choose one or combine
material from both.

For my version, I am using the revised title How to Think Like a (Python)
Programmer. This is a more modest goal than the original, but it might be
more accurate.

vii

Allen B. Downey
Needham MA

Allen Downey is a Professor of Computer Science at the Franklin W. Olin Col-
lege of Engineering.

For the teacher

Swampy and UML

For the student

Try out examples.

Do the in-chapter examples.

Where to get the code.

Contributor List

To paraphrase the philosophy of the Free Software Foundation, this book is
free like free speech, but not necessarily free like free pizza. It came about
because of a collaboration that would not have been possible without the GNU
Free Documentation License. So we thank the Free Software Foundation for
developing this license and, of course, making it available to us.

We also thank the more than 100 sharp-eyed and thoughtful readers who have
sent us suggestions and corrections over the past few years. In the spirit of free
software, we decided to express our gratitude in the form of a contributor list.
Unfortunately, this list is not complete, but we are doing our best to keep it up
to date.

If you have a chance to look through the list, you should realize that each person
here has spared you and all subsequent readers from the confusion of a technical
error or a less-than-transparent explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors
in this book. If you should stumble across one, please check the online version
of the book at http://thinkpython.com, which is the most up-to-date version.
If the error has not been corrected, please take a minute to send us email at
feedback@thinkpython.com. If we make a change due to your suggestion, you
will appear in the next version of the contributor list (unless you ask to be
omitted). Thank you!

viii Chapter 0. Preface

• Lloyd Hugh Allen sent in a correction to Section 8.4.

• Yvon Boulianne sent in a correction of a semantic error in Chapter 5.

• Fred Bremmer submitted a correction in Section 2.1.

• Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book
into beautiful HTML.

• Michael Conlon sent in a grammar correction in Chapter 2 and an improvement
in style in Chapter 1, and he initiated discussion on the technical aspects of
interpreters.

• Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

• Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as
a case study in an earlier version of the book. Their program can now be found
on the website.

• Lee Harr submitted more corrections than we have room to list here, and indeed
he should be listed as one of the principal editors of the text.

• James Kaylin is a student using the text. He has submitted numerous correc-
tions.

• David Kershaw fixed the broken catTwice function in Section 3.10.

• Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also
fixed the Makefile so that it creates an index the first time it is run and helped
us set up a versioning scheme.

• Man-Yong Lee sent in a correction to the example code in Section 2.4.

• David Mayo pointed out that the word “unconsciously” in Chapter 1 needed to
be changed to “subconsciously”.

• Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

• Matthew J. Moelter has been a long-time contributor who sent in numerous
corrections and suggestions to the book.

• Simon Dicon Montford reported a missing function definition and several typos
in Chapter 3. He also found errors in the increment function in Chapter 13.

• John Ouzts corrected the definition of “return value” in Chapter 3.

• Kevin Parks sent in valuable comments and suggestions as to how to improve
the distribution of the book.

• David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of
encouragement.

• Michael Schmitt sent in a correction to the chapter on files and exceptions.

• Robin Shaw pointed out an error in Section 13.1, where the printTime function
was used in an example without being defined.

• Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script
that generates HTML from LaTeX.

• Craig T. Snydal is testing the text in a course at Drew University. He has
contributed several valuable suggestions and corrections.

ix

• Ian Thomas and his students are using the text in a programming course. They
are the first ones to test the chapters in the latter half of the book, and they
have made numerous corrections and suggestions.

• Keith Verheyden sent in a correction in Chapter 3.

• Peter Winstanley let us know about a longstanding error in our Latin in Chapter
3.

• Chris Wrobel made corrections to the code in the chapter on file I/O and ex-
ceptions.

• Moshe Zadka has made invaluable contributions to this project. In addition
to writing the first draft of the chapter on Dictionaries, he provided continual
guidance in the early stages of the book.

• Christoph Zwerschke sent several corrections and pedagogic suggestions, and
explained the difference between gleich and selbe.

• James Mayer sent us a whole slew of spelling and typographical errors, including
two in the contributor list.

• Hayden McAfee caught a potentially confusing inconsistency between two ex-
amples.

• Angel Arnal is part of an international team of translators working on the Span-
ish version of the text. He has also found several errors in the English version.

• Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and
improved many of the other illustrations.

• Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting
pedagogic comments and suggestions about Fibonacci and Old Maid.

• Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.

• Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

• Christopher P. Smith caught several typos and is helping us prepare to update
the book for Python 2.2.

• David Hutchins caught a typo in the Foreword.

• Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is
working on a German translation of the book, and he caught a couple of bad
errors in Chapter 5.

• Julie Peters caught a typo in the Preface.

• Florin Oprina sent in an improvement in makeTime, a correction in printTime,
and a nice typo.

• D. J. Webre suggested a clarification in Chapter 3.

• Ken found a fistful of errors in Chapters 8, 9 and 11.

• Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter
3.

• Curtis Yanko suggested a clarification in Chapter 2.

• Ben Logan sent in a number of typos and problems with translating the book
into HTML.

x Chapter 0. Preface

• Jason Armstrong saw the missing word in Chapter 2.

• Louis Cordier noticed a spot in Chapter 16 where the code didn’t match the
text.

• Brian Cain suggested several clarifications in Chapters 2 and 3.

• Rob Black sent in a passel of corrections, including some changes for Python
2.2.

• Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including
some updates for Python 2.2 and other thoughtful improvements.

• Jason Mader at George Washington University made a number of useful sug-
gestions and corrections.

• Jan Gundtofte-Bruun reminded us that “a error” is an error.

• Abel David and Alexis Dinno reminded us that the plural of “matrix” is “ma-
trices”, not “matrixes”. This error was in the book for years, but two readers
with the same initials reported it on the same day. Weird.

• Charles Thayer encouraged us to get rid of the semi-colons we had put at the
ends of some statements and to clean up our use of “argument” and “parameter”.

• Roger Sperberg pointed out a twisted piece of logic in Chapter 3.

• Sam Bull pointed out a confusing paragraph in Chapter 2.

• Andrew Cheung pointed out two instances of “use before def.”

• C. Corey Capel spotted the missing word in the Third Theorem of Debugging
and a typo in Chapter 4.

• Alessandra helped clear up some Turtle confusion.

• Wim Champagne found a brain-o in a dictionary example.

• Douglas Wright pointed out a problem with floor division in arc.

• Jared Spindor found some jetsom at the end of a sentence.

• Lin Peiheng sent a number of very helpful suggestions.

• Ray Hagtvedt sent in two errors and a not-quite-error.

• Torsten Hübsch pointed out an inconsistency in Swampy.

• Inga Petuhhov corrected an example in Chapter 14.

• Arne Babenhauserheide sent several helpful corrections.

• Mark E. Casida is is good at spotting repeated words.

• Scott Tyler filled in a that was missing. And then sent in a heap of corrections.

• Gordon Shephard sent in several corrections, all in separate emails.

Contents

Preface v

1 The way of the program 1

1.1 The Python programming language 1

1.2 What is a program? . 3

1.3 What is debugging? . 4

1.4 Formal and natural languages 5

1.5 The first program . 7

1.6 Debugging . 7

1.7 Glossary . 8

1.8 Exercises . 9

2 Variables, expressions and statements 11

2.1 Values and types . 11

2.2 Variables . 12

2.3 Variable names and keywords 13

2.4 Statements . 14

2.5 Operators and operands . 14

2.6 Expressions . 15

2.7 Order of operations . 16

2.8 String operations . 16

2.9 Comments . 17

xii Contents

2.10 Debugging . 18

2.11 Glossary . 18

2.12 Exercises . 20

3 Functions 21

3.1 Function calls . 21

3.2 Type conversion functions . 22

3.3 Math functions . 22

3.4 Composition . 23

3.5 Adding new functions . 24

3.6 Definitions and uses . 25

3.7 Flow of execution . 26

3.8 Parameters and arguments . 27

3.9 Variables and parameters are local 28

3.10 Stack diagrams . 28

3.11 Fruitful functions and void functions 30

3.12 Why functions? . 30

3.13 Debugging . 31

3.14 Glossary . 31

3.15 Exercises . 33

4 Case study: interface design 35

4.1 TurtleWorld . 35

4.2 Simple repetition . 36

4.3 Exercises . 38

4.4 Encapsulation . 39

4.5 Generalization . 40

4.6 Interface design . 40

4.7 Refactoring . 41

4.8 A development plan . 42

Contents xiii

4.9 docstring . 43

4.10 Glossary . 44

4.11 Exercises . 44

5 Conditionals and recursion 45

5.1 Modulus operator . 45

5.2 Boolean expressions . 45

5.3 Logical operators . 46

5.4 Conditional execution . 47

5.5 Alternative execution . 47

5.6 Chained conditionals . 47

5.7 Nested conditionals . 48

5.8 Recursion . 49

5.9 Stack diagrams for recursive functions 50

5.10 Infinite recursion . 51

5.11 Keyboard input . 52

5.12 Debugging . 53

5.13 Glossary . 54

5.14 Exercises . 55

6 Fruitful functions 57

6.1 Return values . 57

6.2 Incremental development . 58

6.3 Composition . 60

6.4 Boolean functions . 61

6.5 More recursion . 62

6.6 Leap of faith . 64

6.7 One more example . 65

6.8 Checking types . 65

6.9 Debugging . 66

6.10 Glossary . 68

xiv Contents

7 Iteration 69

7.1 Multiple assignment . 69

7.2 Updating variables . 70

7.3 The while statement . 70

7.4 break . 72

7.5 Square roots . 73

7.6 Algorithms . 74

7.7 Debugging . 75

7.8 Glossary . 76

7.9 Exercises . 76

8 Strings 79

8.1 A string is a sequence . 79

8.2 len . 80

8.3 Traversal with a for loop . 80

8.4 String slices . 81

8.5 Strings are immutable . 82

8.6 A find function . 83

8.7 Looping and counting . 83

8.8 string methods . 84

8.9 The in operator . 85

8.10 String comparison . 86

8.11 Debugging . 86

8.12 Glossary . 88

9 Case study: word play 91

9.1 Reading word lists . 91

9.2 Exercises . 92

9.3 Search . 93

9.4 Looping with indices . 94

9.5 Debugging . 96

9.6 Glossary . 96

Contents xv

10 Lists 97

10.1 A list is a sequence . 97

10.2 Lists are mutable . 98

10.3 Traversing a list . 100

10.4 List operations . 100

10.5 List slices . 101

10.6 List methods . 101

10.7 Map, filter and reduce . 102

10.8 Deleting elements . 103

10.9 Objects and values . 104

10.10 Aliasing . 105

10.11 List arguments . 106

10.12 Copying lists . 107

10.13 Lists and strings . 108

10.14 Debugging . 108

10.15 Glossary . 110

10.16 Exercises . 111

11 Dictionaries 113

11.1 Dictionary as a set of counters 115

11.2 Looping and dictionaries . 116

11.3 Reverse lookup . 116

11.4 Dictionaries and lists . 118

11.5 Hints . 120

11.6 Long integers . 121

11.7 Debugging . 122

11.8 Glossary . 122

11.9 Exercises . 123

xvi Contents

12 Tuples 125

12.1 Tuples are immutable . 125

12.2 Tuple assignment . 126

12.3 Tuples as return values . 127

12.4 Lists and tuples . 128

12.5 Dictionaries and tuples . 129

12.6 Sorting tuples . 131

12.7 Sequences of sequences . 131

12.8 Debugging . 132

12.9 Glossary . 132

12.10 Exercises . 132

13 Case study: data structure selection 135

13.1 DSU . 135

13.2 Word frequency analysis . 136

13.3 Random numbers . 136

13.4 Word histogram . 138

13.5 Most common words . 139

13.6 Optional arguments . 140

13.7 Dictionary subtraction . 140

13.8 Random words . 141

13.9 Markov analysis . 142

13.10 Data structures . 143

13.11 Debugging . 144

13.12 Glossary . 145

14 Files 147

14.1 Persistence . 147

14.2 Reading and writing . 147

14.3 Format operator . 148

Contents xvii

14.4 Filenames and paths . 150

14.5 Catching exceptions . 151

14.6 Databases . 152

14.7 Pickling . 153

14.8 Debugging . 154

14.9 Glossary . 154

15 Classes and objects 155

15.1 User-defined types . 155

15.2 Attributes . 156

15.3 Rectangles . 157

15.4 Instances as return values . 158

15.5 Objects are mutable . 159

15.6 Copying . 159

15.7 Debugging . 161

15.8 Glossary . 162

15.9 Exercises . 162

16 Classes and functions 163

16.1 Time . 163

16.2 Pure functions . 164

16.3 Modifiers . 165

16.4 Prototyping versus planning . 166

16.5 Debugging . 167

16.6 Glossary . 168

16.7 Exercises . 168

xviii Contents

17 Classes and methods 169

17.1 Object-oriented features . 169

17.2 print time . 170

17.3 Another example . 171

17.4 A more complicated example 172

17.5 The init method . 173

17.6 The str method . 174

17.7 Operator overloading . 174

17.8 Type-based dispatch . 175

17.9 Polymorphism . 176

17.10 Debugging . 177

17.11 Glossary . 177

18 Inheritance 179

18.1 Card objects . 179

18.2 Class attributes . 180

18.3 Comparing cards . 182

18.4 Decks . 183

18.5 Printing the deck . 183

18.6 Add, remove, shuffle and sort 184

18.7 Inheritance . 185

18.8 Writing modules for import . 187

18.9 Class diagrams . 187

18.10 Glossary . 188

18.11 Exercises . 188

19 Case study: Tkinter 191

19.1 Widgets . 191

19.2 Buttons and callbacks . 192

19.3 Canvas widgets . 193

Contents xix

19.4 Coordinate sequences . 194

19.5 More widgets . 195

19.6 Packing widgets . 196

19.7 Menus and Callables . 199

19.8 Binding . 200

19.9 Debugging . 202

19.10 Glossary . 202

19.11 Exercises . 203

A Debugging 205

A.1 Syntax errors . 205

A.2 Runtime errors . 207

A.3 Semantic errors . 210

xx Contents

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This
way of thinking combines some of the best features of mathematics, engineering,
and natural science. Like mathematicians, computer scientists use formal lan-
guages to denote ideas (specifically computations). Like engineers, they design
things, assembling components into systems and evaluating tradeoffs among al-
ternatives. Like scientists, they observe the behavior of complex systems, form
hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving.
Problem solving means the ability to formulate problems, think creatively about
solutions, and express a solution clearly and accurately. As it turns out, the
process of learning to program is an excellent opportunity to practice problem-
solving skills. That’s why this chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another
level, you will use programming as a means to an end. As we go along, that end
will become clearer.

1.1 The Python programming language

The programming language you will be learning is Python. Python is an exam-
ple of a high-level language; other high-level languages you might have heard
of are C, C++, Perl, and Java.

As you might infer from the name “high-level language,” there are also low-

level languages, sometimes referred to as “machine languages” or “assembly
languages.” Loosely speaking, computers can only execute programs written in
low-level languages. So programs written in a high-level language have to be

2 Chapter 1. The way of the program

processed before they can run. This extra processing takes some time, which is
a small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a
high-level language. Programs written in a high-level language take less time
to write, they are shorter and easier to read, and they are more likely to be
correct. Second, high-level languages are portable, meaning that they can
run on different kinds of computers with few or no modifications. Low-level
programs can run on only one kind of computer and have to be rewritten to run
on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages:
interpreters and compilers. An interpreter reads a high-level program and
executes it, meaning that it does what the program says. It processes the pro-
gram a little at a time, alternately reading lines and performing computations.

OUTPUTSOURCE
CODE

INTERPRETER

A compiler reads the program and translates it completely before the program
starts running. In this case, the high-level program is called the source code,
and the translated program is called the object code or the executable. Once
a program is compiled, you can execute it repeatedly without further translation.

OUTPUT
CODE
OBJECT EXECUTOR

CODE
SOURCE COMPILER

Python is considered an interpreted language because Python programs are ex-
ecuted by an interpreter. There are two ways to use the interpreter: interactive
mode and script mode. In interactive mode, you type Python programs and the
interpreter prints the result:

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.

>>> print 1 + 1

2

The first two lines in this example are displayed by the interpreter when it starts
up. The third line starts with >>>, which is the prompt the interpreter uses to
indicate that it is ready. If you type print 1 + 1, the interpreter replies 2.

1.2. What is a program? 3

Alternatively, you can store code in a file and use the interpreter to execute the
contents of the file. Such a file is called a script. For example, you could use a
text editor to create a file named dinsdale.py with the following contents:

print 1 + 1

By convention, Python scripts have names that end with .py.

To execute the script, you have to tell the interpreter the name of the file. In
a UNIX command window, you would type python dinsdale.py. In other
development environments, the details of executing scripts are different.

Working in interactive mode is convenient for testing small pieces of code be-
cause you can type and execute them immediately. But for anything more than
a few lines, you should save your code as a script so you can modify and execute
it in the future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, such as solving
a system of equations or finding the roots of a polynomial, but it can also be a
symbolic computation, such as searching and replacing text in a document or
(strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions
appear in just about every language:

input: Get data from the keyboard, a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appro-
priate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of instructions that look pretty
much like these. So you can think of programming as the process of breaking
a large, complex task into smaller and smaller subtasks until the subtasks are
simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic when we talk
about algorithms.

4 Chapter 1. The way of the program

1.3 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are
called bugs and the process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors,
and semantic errors. It is useful to distinguish between them in order to track
them down more quickly.

1.3.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the inter-
preter displays an error message. Syntax refers to the structure of a program
and the rules about that structure. For example, in English, a sentence must
begin with a capital letter and end with a period. this sentence contains a
syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e. e. cummings without spewing error messages.
Python is not so forgiving. If there is a single syntax error anywhere in your
program, Python will print an error message and quit, and you will not be able
to run your program. During the first few weeks of your programming career,
you will probably spend a lot of time tracking down syntax errors. As you gain
experience, you will make fewer errors and find them faster.

1.3.2 Runtime errors

The second type of error is a runtime error, so called because the error does not
appear until after the program has started running. These errors are also called
exceptions because they usually indicate that something exceptional (and bad)
has happened.

Runtime errors are rare in the simple programs you will see in the first few
chapters, so it might be a while before you encounter one.

1.3.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error
in your program, it will run successfully, in the sense that the computer will
not generate any error messages, but it will not do the right thing. It will do
something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying
semantic errors can be tricky because it requires you to work backward by
looking at the output of the program and trying to figure out what it is doing.

1.4. Formal and natural languages 5

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can
be frustrating, debugging is one of the most intellectually rich, challenging, and
interesting parts of programming.

In some ways, debugging is like detective work. You are confronted with clues,
and you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about
what is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does
what you want. The idea is that you should start with a program that does
something and make small modifications, debugging them as you go, so that
you always have a working program.

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux.” (The Linux Users’ Guide Beta Version 1)

Later chapters will make more suggestions about debugging and other program-
ming practices.

1.4 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have

been designed to express computations.

6 Chapter 1. The way of the program

Formal languages tend to have strict rules about syntax. For example, 3+3 = 6
is a syntactically correct mathematical statement, but 3+ = 3$6 is not. H2O is
a syntactically correct chemical formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, such as words, numbers, and chemical
elements. One of the problems with 3+ = 3$6 is that $ is not a legal token
in mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement; that
is, the way the tokens are arranged. The statement 3+ = 3$6 is illegal because
even though + and = are legal tokens, you can’t have one right after the other.
Similarly, in a chemical formula the subscript comes after the element name,
not before.
Exercise 1.1. Write a well-structured English sentence with invalid tokens in
it. Then write another sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The penny dropped,” you under-
stand that “the penny” is the subject and “dropped” is the predicate. Once
you have parsed a sentence, you can figure out what it means, or the semantics
of the sentence. Assuming that you know what a penny is and what it means
to drop, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax, and semantics—there are many differences:

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
penny dropped,” there is probably no penny and nothing dropping1. For-
mal languages mean exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard
time adjusting to formal languages. In some ways, the difference between formal
and natural language is like the difference between poetry and prose, but more
so:

1This idiom means that someone realized something after a period of confusion.

1.5. The first program 7

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important, and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,
learn to parse the program in your head, identifying the tokens and interpreting
the structure. Finally, the details matter. Small errors in spelling and punc-
tuation, which you can get away with in natural languages, can make a big
difference in a formal language.

1.5 The first program

Traditionally, the first program you write in a new language is called “Hello,
World!” because all it does is display the words, “Hello, World!” In Python, it
looks like this:

print ’Hello, World!’

This is an example of a print statement, which doesn’t actually print anything
on paper. It displays a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and end of the text
to be displayed; they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of
the “Hello, World!” program. By this standard, Python does about as well as
possible.

1.6 Debugging

It is a good idea to read this book in front of a computer so you can try out
the examples as you go. You can run most of the examples in interactive mode,
but if you put the code into a script, it is easier to try out variations.

8 Chapter 1. The way of the program

Whenever you are experimenting with a new feature, you should try to make
mistakes. For example, in the “Hello, world!” program, what happens if you
leave out one of the quotation marks? What if you leave out both? What if you
spell print wrong?

This kind of experiment helps you remember what you read; it also helps with
debugging, because you get to know what the error messages mean. And that
brings us to the First Theorem of Debugging:

It is better to make mistakes now and on purpose than later and
accidentally.

Learning to debug can be frustrating, but it is one of the most important parts
of thinking like a computer scientist. At the end of each chapter there is a
debugging section, like this one, with my thoughts (and theorems) of debugging.
I hope they help!

1.7 Glossary

problem solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Python that is designed
to be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute; also called “machine language” or “assembly lan-
guage.”

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program written in a high-level language into a low-
level language all at once, in preparation for later execution.

source code: A program in a high-level language before being compiled.

object code: The output of the compiler after it translates the program.

executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate that it is ready to
take input from the user.

script: A program stored in a file (usually one that will be interpreted).

1.8. Exercises 9

program: A set of instructions that specifies a computation.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of
programming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to interpret).

exception: An error that is detected while the program is running.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than
what the programmer intended.

natural language: Any one of the languages that people speak that evolved
naturally.

formal language: Any one of the languages that people have designed for
specific purposes, such as representing mathematical ideas or computer
programs; all programming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, anal-
ogous to a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to display
a value on the screen.

1.8 Exercises

• Use a web browser to go to http://python.org. This page contains a
lot of information about Python, pointers to Python-related pages, and it
gives you the ability to search the Python documentation.

For example, if you enter print in the search window, the first link that
appears is the documentation of the print statement. At this point, not
all of it will make sense to you, but it is good to know where it is!

• Start the Python interpreter and type help() to start the online help
utility. Alternatively, you can type help(’print’) to get information
about a particular topic, in this case the print statement. If this example
doesn’t work, you may need to install additional Python documentation
or set an environment variable; unfortunately, the details depend on your
operating system and version of Python.

10 Chapter 1. The way of the program

Chapter 2

Variables, expressions and

statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a
number. The values we have seen so far are 1, 2, and ’Hello, World!’.

These values belong to different types: 2 is an integer, and ’Hello, World!’

is a string, so-called because it contains a “string” of letters. You (and the
interpreter) can identify strings because they are enclosed in quotation marks.

The print statement also works for integers.

>>> print 4

4

If you are not sure what type a value has, the interpreter can tell you.

>>> type(’Hello, World!’)

<type ’str’>

>>> type(17)

<type ’int’>

Not surprisingly, strings belong to the type str and integers belong to the type
int. Less obviously, numbers with a decimal point belong to a type called float,
because these numbers are represented in a format called floating-point.

>>> type(3.2)

<type ’float’>

12 Chapter 2. Variables, expressions and statements

What about values like ’17’ and ’3.2’? They look like numbers, but they are
in quotation marks like strings.

>>> type(’17’)

<type ’str’>

>>> type(’3.2’)

<type ’str’>

They’re strings.

When you type a large integer, you might be tempted to use commas between
groups of three digits, as in 1,000,000. This is not a legal integer in Python,
but it is legal:

>>> print 1,000,000

1 0 0

Well, that’s not what we expected at all! Python interprets 1,000,000 as a
comma-separated sequence of integers which it prints with spaces between.

This is the first example we have seen of a semantic error: the code runs without
producing an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:

>>> message = ’And now for something completely different’

>>> n = 17

>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new
variable named message; the second gives the integer 17 to n; the third assigns
the (approximate) value of π to pi.

A common way to represent variables on paper is to write the name with an
arrow pointing to the variable’s value. This kind of figure is called a state

diagram because it shows what state each of the variables is in (think of it as
the variable’s state of mind). This diagram shows the result of the assignment
statements:

message

n

pi

17

’And now for something completely different’

3.1415926535897931

2.3. Variable names and keywords 13

The print statement displays the value of a variable:

>>> print n

17

>>> print pi

3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)

<type ’str’>

>>> type(n)

<type ’int’>

>>> type(pi)

<type ’float’>

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful—
they document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and num-
bers, but they have to begin with a letter. Although it is legal to use uppercase
letters, by convention we don’t. If you do, remember that case matters. Bruce

and bruce are different variables.

The underscore character () can appear in a name. It is often used in names
with multiple words, such as my name or airspeed of unladen swallow.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = ’big parade’

SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = ’Advanced Theoretical Herpetology’

SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more is illegal
because it contains an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses
keywords to recognize the structure of the program, and they cannot be used
as variable names.

Python has 31 keywords:

14 Chapter 2. Variables, expressions and statements

and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

You might want to keep this list handy. If the interpreter complains about one
of your variable names and you don’t know why, see if it is on this list.

2.4 Statements

A statement is an instruction that the Python interpreter can execute. We have
seen two kinds of statements: print and assignment.

When you type a statement on the command line, Python executes it and
displays the result, if there is one.

A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the statements execute.

For example, the script

print 1

x = 2

print x

produces the output

1

2

The assignment statement produces no output itself.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and
multiplication. The values the operator is applied to are called operands.

The following examples demonstrate the arithmetic operators:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in
Python what they mean in mathematics. The asterisk (*) is the symbol for
multiplication, and ** is the symbol for exponentiation.

2.6. Expressions 15

When a variable name appears in the place of an operand, it is replaced with
its value before the operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you ex-
pect, but you might be surprised by division. The following operation has an
unexpected result:

>>> minute = 59

>>> minute/60

0

The value of minute is 59, and in conventional arithmetic 59 divided by 60 is
0.98333, not 0. The reason for the discrepancy is that Python is performing
floor division1.

When both of the operands are integers, the result must also be an integer; floor
division always chops off the fraction part, so in this example it rounds down
to zero.

If either of the operands is a floating-point number, Python performs floating-
point division, and the result is a float:

>>> minute/60.0

0.98333333333333328

2.6 Expressions

An expression is a combination of values, variables, and operators. If you type
an expression on the command line, the interpreter evaluates it and displays
the result:

>>> 1 + 1

2

Although expressions can contain values, variables, and operators, not every
expression contains all of these elements. A value all by itself is considered an
expression, and so is a variable.

>>> 17

17

>>> x

2

In a script, an expression all by itself is a legal statement, but it doesn’t do
anything. The following script produces no output at all:

1This behavior is likely to change in Python 3.0.

16 Chapter 2. Variables, expressions and statements

17

3.2

’Hello, World!’

1 + 1

If you want the script to display the values of these expressions, you have to use
print statements.

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. For mathematical operators, Python
follows the mathematical rules. The acronym PEMDAS is a useful way to
remember them:

• Parentheses have the highest precedence and can be used to force an
expression to evaluate in the order you want. Since expressions in paren-
theses are evaluated first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can
also use parentheses to make an expression easier to read, as in (minute

* 100) / 60, even though it doesn’t change the result.

• Exponentiation has the next highest precedence, so 2**1+1 is 3 and not
4, and 3*1**3 is 3 and not 27.

• Multiplication and Division have the same precedence, which is higher
than Addition and Subtraction, which also have the same precedence. So
2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right. So
in the expression degrees / 2 * pi, the division happens first and the
result is multiplied by pi. If you meant to divide by 2π, you should have
used parentheses.

2.8 String operations

In general, you cannot perform mathematical operations on strings, even if the
strings look like numbers, so the following are illegal:

’2’-’1’ ’eggs’/’easy’ ’third’*’a charm’

The + operator does work with strings, but it might not do exactly what you
expect: it performs concatenation, which means joining the strings by linking
them end-to-end. For example:

2.9. Comments 17

first = ’throat’

second = ’warbler’

print first + second

The output of this program is throatwarbler.

The * operator also works on strings; it performs repetition. For example,
’Spam’*3 is ’SpamSpamSpam’. If one of the operands is a string, the other has
to be an integer.

On one hand, this use of + and * makes sense by analogy with addition and
multiplication. Just as 4*3 is equivalent to 4+4+4, we expect ’Spam’*3 to be
the same as ’Spam’+’Spam’+’Spam’, and it is. On the other hand, there is a
significant way in which string concatenation and repetition are different from
integer addition and multiplication. Can you think of a property that addition
and multiplication have that string concatenation and repetition do not?

2.9 Comments

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense, and it is often difficult to look at a piece of code
and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are called comments,
and they are marked with the # symbol:

compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored—it has no effect on the
program.

Comments are most useful when they document non-obvious features of the
code. It is reasonable to assume that the reader can figure out what the code
does; it is much more useful to explain why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

18 Chapter 2. Variables, expressions and statements

Good variable names can reduce the need for comments, but long names can
make complex expressions hard to read, so there is a tradeoff.

2.10 Debugging

At this point the syntax error you are most likely to make is an illegal variable
name, like class and yield (which are keywords) or odd~job and US$ which
contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without
an operator:

>>> bad name = 5

SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common
messages are SyntaxError: invalid syntax and SyntaxError: invalid

token, neither of which is very informative.

The run-time error you are most likely to make is a “use before def;” that is,
trying to use a variable before you have assigned a value. This can happen if
you spell a variable name wrong:

>>> principal = 327.68

>>> interest = principle * rate

NameError: name ’principle’ is not defined

Variables names are case sensitive, so Bob is not the same as bob.

At this point the most likely cause of a semantic error is the order of operations.
For example, to evaluate 1

2π
, you might be tempted to write

>>> 1.0 / 2.0 * math.pi

But the division happens first, so you would get π/2, which is not the same
thing! Unfortunately, there is no way for Python to know what you intended
to write, so in this case you don’t get an error message; you just get the wrong
answer.

And that brings us to the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting
an error message.

2.11 Glossary

value: One of the basic units of data, like a number or string, that a program
manipulates.

2.11. Glossary 19

type: A category of values. The types we have seen so far are integers (type
int), floating-point numbers (type float), and strings (type str).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.

string: A type that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. So far, the
statements we have seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values
they refer to.

keyword: A reserved word that is used by the compiler to parse a program;
you cannot use keywords like if, def, and while as variable names.

operator: A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

operand: One of the values on which an operator operates.

floor division: The operation that divides two numbers and chops off the frac-
tion part.

expression: A combination of variables, operators, and values that represents
a single result value.

evaluate: To simplify an expression by performing the operations in order to
yield a single value.

rules of precedence: The set of rules governing the order in which expressions
involving multiple operators and operands are evaluated.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programmers (or
anyone reading the source code) and has no effect on the execution of the
program.

20 Chapter 2. Variables, expressions and statements

2.12 Exercises

Practice using the Python interpreter as a calculator:

• What is the circumference of a circle with radius 5? What is the area?

• If you ran 10 kilometers in 45 minutes 30 seconds, what was your average
pace in minutes per mile? What was your average speed in miles per hour?
(Hint: there are 1.61 kilometers in a mile).

Chapter 3

Functions

3.1 Function calls

In the context of programming, a function is a named sequence of statements
that performs a computation. When you define a function, you specify the name
and the sequence of statements. Later, you can “call” the function by name.
We have already seen one example of a function call:

>>> type(’32’)

<type ’str’>

The name of the function is type. The expression in parentheses is called the
argument of the function. The result, for this function, is the type of the
argument, which is a string.

It is common to say that a function “takes” an argument and “returns” a result.
The result is called the return value.

When you call a function in interactive mode, the interpreter displays the return
value, but in a script a function call, all by itself, doesn’t display anything. To
see the result, you have to print it:

print type(’32’)

Or assign the return value to a variable, which you can print (or use for some
other purpose) later.

stereo = type(’32’)

print stereo

22 Chapter 3. Functions

3.2 Type conversion functions

Python provides built-in functions that convert values from one type to another.
The int function takes any value and converts it to an integer if it can or
complains otherwise:

>>> int(’32’)

32

>>> int(’Hello’)

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesn’t round off; it
chops off the fraction part:

>>> int(3.99999)

3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float(’3.14159’)

3.14159

Finally, str converts its argument to a string:

>>> str(32)

’32’

>>> str(3.14149)

’3.14149’

3.3 Math functions

Python has a math module that provides most of the familiar mathematical
functions. A module is a file that contains a collection of related functions.

Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module
object, you get some information about it:

>>> print math

<module ’math’ from ’/usr/lib/python2.4/lib-dynload/mathmodule.so’>

3.4. Composition 23

The module object contains the functions and variables defined in the module.
To access one of the functions, you have to specify the name of the module and
the name of the function, separated by a dot (also known as a period). This
format is called dot notation.

>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio.
The math module also provides a function called log that computes logarithms
base e.

The second example finds the sine of radians. The name of the variable is
a hint that sin and the other trigonometric functions (cos, tan, etc.) take
arguments in radians. To convert from degrees to radians, divide by 360 and
multiply by 2π:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi

>>> math.sin(radians)

0.707106781187

The expression math.pi gets the variable pi from the math module. Conve-
niently, the value of this variable is an approximation of π, accurate to about
15 digits.

If you know your trigonometry, you can check the previous result by comparing
it to the square root of two divided by two:

>>> math.sqrt(2) / 2.0

0.707106781187

3.4 Composition

So far, we have looked at the elements of a program—variables, expressions,
and statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, the argument of
a function can be any kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

24 Chapter 3. Functions

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with
one exception: the left side of an assignment statement has to be a variable
name. An expression on the left side is a syntax error.

>>> minutes = hours * 60 # right

>>> hours * 60 = minutes # wrong!

SyntaxError: can’t assign to operator

3.5 Adding new functions

So far, we have only been using the functions that come with Python, but it is
also possible to add new functions. A function definition specifies the name of
a new function and the sequence of statements that execute when the function
is called.

Here is an example:

def print_lyrics():

print "I’m a lumberjack, and I’m okay."

print "I sleep all night and I work all day."

def is a keyword that indicates that this is a function definition. The name of
the function is print lyrics. The rules for function names are the same as for
variable names: letters, numbers and some punctuation marks are legal, but the
first character can’t be a number. You can’t use a keyword as the name of a
function, and you should avoid having a variable and a function with the same
name.

The empty parentheses after the name indicate that this function doesn’t take
any arguments.

The first line of the function definition is called the header; the rest is called
the body. The header has to end with a colon and the body has to be indented.
By convention, the indentation is always four spaces. The body can contain any
number of statements.

The strings in the print statements are enclosed in double quotes. Single quotes
and double quotes do the same thing. Most people use single quotes except in
cases like this where a single quote (which is also an apostrophe) appears in the
string.

If you type a function definition in interactive mode, the interpreter prints
ellipses (...) to let you know that the definition isn’t complete:

3.6. Definitions and uses 25

>>> def print_lyrics():

... print "I’m a lumberjack, and I’m okay."

... print "I sleep all night and I work all day."

...

To end the function, you have to enter an empty line (this is not necessary in a
script).

Defining a function creates a variable with the same name.

>>> print print_lyrics

<function print_lyrics at 0xb7e99e9c>

>>> print type(print_lyrics)

<type ’function’>

The value of print lyrics is a function object, which has type function.

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()

I’m a lumberjack, and I’m okay.

I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function.
For example, to repeat the previous refrain, we could write a function called
repeat lyrics:

def repeat_lyrics():

print_lyrics()

print_lyrics()

And then call repeat lyrics:

>>> repeat_lyrics()

I’m a lumberjack, and I’m okay.

I sleep all night and I work all day.

I’m a lumberjack, and I’m okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

3.6 Definitions and uses

Pulling together the code fragments from the previous section, the whole pro-
gram looks like this:

def print_lyrics():

print "I’m a lumberjack, and I’m okay."

26 Chapter 3. Functions

print "I sleep all night and I work all day."

def repeat_lyrics():

print_lyrics()

print_lyrics()

repeat_lyrics()

This program contains two function definitions: print lyrics and
repeat lyrics. Function definitions get executed just like other statements,
but the effect is to create the new function. The statements inside the func-
tion do not get executed until the function is called, and the function definition
generates no output.

As you might expect, you have to create a function before you can execute it.
In other words, the function definition has to be executed before the first time
it is called.
Exercise 3.1. Move the last line of this program to the top, so the function call
appears before the definitions. Run the program and see what error message you
get.
Exercise 3.2. Move the function call back to the bottom and move the definition
of print lyrics after the definition of repeat lyrics. What happens when you
run this program?

3.7 Flow of execution

In order to ensure that a function is defined before its first use, you have to
know the order in which statements are executed, which is called the flow of

execution.

Execution always begins at the first statement of the program. Statements are
executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but
remember that statements inside the function are not executed until the function
is called.

A function call is like a detour in the flow of execution. Instead of going to the
next statement, the flow jumps to the body of the function, executes all the
statements there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call
another. While in the middle of one function, the program might have to execute
the statements in another function. But while executing that new function, the
program might have to execute yet another function!

3.8. Parameters and arguments 27

Fortunately, Python is adept at keeping track of where it is, so each time a
function completes, the program picks up where it left off in the function that
called it. When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t
always want to read from top to bottom. Sometimes it makes more sense if you
follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in functions you have used require arguments. For example,
when you call math.sin you pass a number (in radians) as an argument. Some
functions take more than one argument; math.pow takes two, the base and the
exponent.

Inside the function, the arguments are assigned to variables called parameters.
Here is an example of a user-defined function that takes an argument:

def print_twice(bruce):

print bruce

print bruce

This function assigns the argument to a parameter named bruce. When the
function is called, it prints the value of the parameter, whatever it is, twice.

This function works with any value that can be printed.

>>> print_twice(’Spam’)

Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice(math.pi)

3.14159265359

3.14159265359

The same rules of composition that apply to built-in functions also apply to
user-defined functions, so we can use any kind of expression as an argument for
print twice:

>>> print_twice(’Spam ’*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

28 Chapter 3. Functions

The argument is evaluated before the function is called, so in the examples the
expressions ’Spam ’*4 and math.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ’Eric, the half a bee.’

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do
with the name of the parameter (bruce). It doesn’t matter what the value was
called back home (in the caller); here in print twice, we call everybody bruce.

3.9 Variables and parameters are local

When you create a variable inside a function, it is local, which means that it
only exists inside the function. For example:

def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

This function takes two arguments, concatenates them, and prints the result
twice. Here is an example that uses it:

>>> line1 = ’Bing tiddle ’

>>> line2 = ’tiddle bang.’

>>> cat_twice(line1, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

When cat twice terminates, the variable cat is destroyed. If we try to print
it, we get an exception:

>>> print cat

NameError: name ’cat’ is not defined

Parameters are also local. For example, outside print twice, there is no such
thing as bruce.

3.10 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to
draw a stack diagram. Like state diagrams, stack diagrams show the value of
each variable, but they also show the function each variable belongs to.

3.10. Stack diagrams 29

Each function is represented by a frame. A frame is a box with the name of
a function beside it and the parameters and variables of the function inside it.
The stack diagram for the previous example looks like this:

line1

line2 ’tiddle bang.’

part1

part2

cat

bruce

’Bing tiddle ’

’Bing tiddle ’

’tiddle bang.’

’Bing tiddle tiddle bang.’

’Bing tiddle tiddle bang.’

__main__

cat_twice

print_twice

The frames are arranged in a stack that indicates which function called which,
and so on. In this example, print twice was called by cat twice, and
cat twice was called by main , which is a special name for the topmost frame.
When you create a variable outside of any function, it belongs to main .

Each parameter refers to the same value as its corresponding argument. So,
part1 has the same value as line1, part2 has the same value as line2, and
bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function,
and the name of the function that called it, and the name of the function that
called that, all the way back to main .

For example, if you try to access cat from within print twice, you get a
NameError:

Traceback (innermost last):

File "test.py", line 13, in __main__

cat_and_print_twice(line1, line2)

File "test.py", line 5, in cat_and_print_twice

print_twice(cat)

File "test.py", line 9, in print_twice

print cat

NameError: name ’cat’ is not defined

This list of functions is called a traceback. It tells you what program file the
error occurred in, and what line, and what functions were executing at the time.
It also shows the line of code that caused the error.

The order of the functions in the traceback is the same as the order of the frames
in the stack diagram. The function that is currently running is at the bottom.

30 Chapter 3. Functions

3.11 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;
for want of a better name, I call them fruitful functions. Other functions,
like print twice, perform an action but don’t return a value. They are called
void functions.

When you call a fruitful function, you almost always want to do something with
the result; for example, you might assign it to a variable or use it as part of an
expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.2360679774997898

But in a script, if you call a fruitful function all by itself, the return value is lost
forever!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store or display
the result, it is not very useful.

Void functions might display something on the screen or have some other effect,
but they don’t have a return value. If you try to assign the result to a variable,
you get a special value called None.

>>> result = print_twice(’Bing’)

Bing

Bing

>>> print result

None

The value None is not the same as the string ’None’. It is a special value that
has its own type:

>>> print type(None)

<type ’NoneType’>

The functions we have written so far are all void. We will start writing fruitful
functions in a few chapters.

3.12 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are a lot of reasons; here are a few:

3.13. Debugging 31

• Creating a new function gives you an opportunity to name a group of
statements, which makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code.
Later, if you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one
at a time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

3.13 Debugging

If you are using a text editor to write your scripts, you might run into problems
with spaces and tabs. The best way to avoid these problems is to use spaces
exclusively (no tabs). Most text editors that know about Python do this by
default, but some don’t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try
to find an editor that manages indentation for you.

Also, don’t forget to save your program before you run it. Some development
environments do this automatically, but some don’t. In that case the program
you are looking at in the text editor is not the same as the program you are
running (the one on disk).

Debugging can take a long time if you keep running the same, incorrect, program
over and over! And that brings me to the Third Theorem of Debugging:

Make sure that the code you are looking at is the code you are
running.

If you’re not sure, put something like print ’hello!’ at the beginning of the
program and run it again. If you don’t see ’hello!’, you’re not running the
right program!

3.14 Glossary

function: A named sequence of statements that performs some useful oper-
ation. Functions may or may not take arguments and may or may not
produce a result.

function definition: A statement that creates a new function, specifying its
name, parameters, and the statements it executes.

32 Chapter 3. Functions

function object: A value created by a function definition. The name of the
function is a variable that refers to a function object.

header: The first line of a function definition.

body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed as an
argument.

function call: A statement that executes a function. It consists of the function
name followed by an argument list.

argument: A value provided to a function when the function is called. This
value is assigned to the corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable can only
be used inside its function.

return value: The result of a function. If a function call is used as an expres-
sion, the return value is the value of the expression.

fruitful function: A function that returns a value.

void function: A function that doesn’t return a value.

module: A file that contains a collection of related functions and other defini-
tions.

import statement: A statement that reads a module file and creates a module
object.

module object: A value created by an import statement that provides access
to the values defined in a module.

dot notation: The syntax for calling a function in another module by specify-
ing the module name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or a statement
as part of a larger statement.

flow of execution: The order in which statements are executed during a pro-
gram run.

stack diagram: A graphical representation of a stack of functions, their vari-
ables, and the values they refer to.

frame: A box in a stack diagram that represents a function call. It contains
the local variables and parameters of the function.

traceback: A list of the functions that are executing, printed when an excep-
tion occurs.

3.15. Exercises 33

3.15 Exercises

•

•

34 Chapter 3. Functions

Chapter 4

Case study: interface design

4.1 TurtleWorld

To accompany this book, I have written a suite of modules called Swampy. One
of these modules is TurtleWorld, which provides a set of functions for drawing
lines by steering turtles around the screen.

You can download Swampy from allendowney.com/swampy. Move into the
directory that contains TurtleWorld.py, start the Python interpreter, and type:

>>> from TurtleWorld import *

This is a variation of the import statement we saw before. Instead of creating a
module object, it imports the functions in the module directly, so we can access
them without using dot notation. For example, to create TurtleWorld, type:

>>> TurtleWorld()

A window should appear on the screen and the interpreter should display some-
thing like:

<TurtleWorld.TurtleWorld instance at 0xb7f0c2ec>

The angle-brackets indicate that the return value from TurtleWorld is an in-

stance of a TurtleWorld as defined in module TurtleWorld. In this context,
an instance is a member of a set; this TurtleWorld is one of the set of possible
TurtleWorlds.

To create a turtle, type:

>>> bob = Turtle()

36 Chapter 4. Case study: interface design

In this case we assign the return value from Turtle to a variable named bob so
we can refer to it later (we don’t really have a way to refer to the TurtleWorld).

The turtle-steering functions are fd and bk for forward and backward, and lt

and rt for left and right turns.

To draw a right angle, type:

>>> fd(bob, 100)

>>> rt(bob)

>>> fd(bob, 100)

The first line (and third) tells bob to take 100 steps forward. The second line
tells him to turn right. In the TurtleWorld window you should see the turtle
move east and then south, leaving two line segments behind.

Before you go on, use bk and lt to put the turtle back where it started.

4.2 Simple repetition

If you haven’t already, move into the directory that contains TurtleWorld.py.
Create a file named polygon.py and type in the code from the previous section:

from TurtleWorld import *

TurtleWorld()

bob = Turtle()

fd(bob, 100)

lt(bob)

fd(bob, 100)

When you run the program, you should see bob draw a right angle, but when
the program finishes, the window disappears. Add the line

wait_for_user()

at the end of the program and run it again. Now the window stays up until you
close it.

Now modify the program to draw a square. Don’t turn the page until you’ve
got it working!

Chances are you wrote something like this (leaving out the code that creates
TurtleWorld and waits for the user):

fd(bob, 100)

lt(bob)

fd(bob, 100)

lt(bob)

4.2. Simple repetition 37

fd(bob, 100)

lt(bob)

fd(bob, 100)

We can do the same thing more concisely with a for statement. Add this
example to polygon.py and run it again:

for i in range(4):

print ’Hello!’

You should see something like this:

Hello!

Hello!

Hello!

Hello!

This is the simplest use of the for statement; we will see more later. But that
should be enough to let you rewrite your square-drawing program. Don’t turn
the page until you do.

38 Chapter 4. Case study: interface design

Here is a for statement that draws a square:

for i in range(4):

fd(bob, 100)

lt(bob)

The syntax of a for statement is similar to a function definition. It has a header
that ends with a colon and an indented body. The body can contain any number
of any kind of statement.

A for statement is sometimes called a loop because the flow of execution runs
through the body and then loops back to the top. In this case, it runs the body
four times.

This version is actually a little different from the previous square-drawing code
because it makes another left turn after drawing the last side of the square. The
extra turn takes a little more time, but it simplifies the code if we do the same
thing every time through the loop. This version also has the effect of leaving
the turtle back in the starting position, facing in the starting direction.

4.3 Exercises

The following is a series of exercises using TurtleWorld. They are meant to be
fun, but they have a point, too. While you are working on them, think about
what the point is.

The following sections have solutions to the exercises, so don’t look until you
have finished (or at least tried).

1. Write a function called square that takes a parameter named t, which is
a turtle. It should use the turtle to draw a square.

Write a function call that passes bob as an argument to square, and then
run the program again.

2. Add another parameter, named length, to square. Modify the body so
length of the sides is length, and then modify the function call to provide
a second argument. Run the program again. Test your program with a
range of values for length.

3. The functions lt and rt make 90-degree turns by default, but you can
provide a second argument to that specifies the number of degrees. For
example, lt(bob, 45) turns bob 45 degrees to the left.

Make a copy of square and change the name to polygon. Add another
parameter named n and modify the body so it draws an n-sided regular
polygon. Hint: The angles of an n-sided regular polygon are 360.0/n
degrees.

4.4. Encapsulation 39

4. Write a function called circle that takes a turtle, t, and radius, r, as
parameters and that draws an approximate circle by invoking polygon

with an appropriate length and number of sides. Test your function with
a range of values of r.

Hint: figure out the circumference of the circle and make sure that length
* n = circumference.

Another hint: if bob is too slow for you, you can speed him up by changing
bob.delay, which is the time between moves, in seconds. bob.delay =

0.01 ought to get him moving.

5. Make a more general version of circle called arc that takes an addi-
tional parameter angle, which determines what fraction of a circle to
draw. angle is in units of degrees, so when angle=360, arc should draw
a complete circle.

4.4 Encapsulation

The first exercise asks you to put your square-drawing code into a function
definition and then call the function, passing the turtle as a parameter. Here is
a solution:

def square(t):

for i in range(4):

fd(t, 100)

lt(t)

square(bob)

The innermost statements, fd and lt are indented twice to show that they
are inside the for loop, which is inside the function definition. The next line,
square(bob), is flush with the left margin, so that is the end of both the for

loop and the function definition.

Inside the function, t refers to the same turtle bob refers to, so lt(t) has the
same effect as lt(bob). So why not call the parameter bob? The idea is that t
can be any turtle, not just bob, so you could create a second turtle and pass it
as an argument to square:

ray = Turtle()

square(ray)

Wrapping a piece of code up in a function is called encapsulation. One of the
benefits of encapsulation is that it attaches a name to the code, which serves as
a kind of documentation. Another advantage is that if you re-use the code, it
is more concise to call a function twice than to copy and paste the body!

40 Chapter 4. Case study: interface design

4.5 Generalization

The next step is to add a length parameter to square. Here is a solution:

def square(t, length):

for i in range(4):

fd(t, length)

lt(t)

square(bob, 100)

Adding a parameter to a function is called generalization because it makes the
function more general: in the previous version, the square is always the same
size; in this version it can be any size.

The next step is also a generalization. Instead of drawing squares, polygon

draws regular polygons with any number of sides. Here is a solution:

def polygon(t, length, n):

angle = 360.0 / n

for i in range(n):

fd(t, length)

lt(t, angle)

polygon(bob, 70, 7)

This draws a 7-sides polygon with side length 70. If you have more than a few
numeric arguments, it is easy to forget what they are, or what order they should
be in. It is legal, and sometimes helpful, to include the names of the parameters
in the argument list:

polygon(bob, length=70, n=7)

This syntax makes the program more readable. It is also a reminder about how
arguments and parameters work: when you call a function, the arguments are
assigned to the parameters.

4.6 Interface design

The next step is to write circle, which takes a radius, r as a parameter.

One way to get started is to copy and modify polygon. Here is a simple solution:

def circle(t, r):

circumference = 2 * math.pi * r

n = 50

length = circumference / n

polygon(t, length, n)

4.7. Refactoring 41

The first line computes the circumference of a circle with radius r using the
formula 2πr. Since we use math.pi, we have to import math. By convention,
import statements are usually at the beginning of the script.

n is the number of line segments in our approximation of a circle, so length

is the length of each segment. Thus, polygon draws a 50-sides polygon that
approximates a circle with radius r.

One limitation of this solution is that n is a constant, which means that for very
big circles, the line segments are too long, and for small circles, we waste time
drawing very small segments. One solution would be to generalize the function
by taking n as a parameter. This would give the user (whoever calls circle)
more control, but the interface would be less clean.

The interface of a function is a summary of how it is used: what are the
parameters? What does the function do? And what is the return value? An
interface is “clean” if it is “as simple as possible, but not simpler. (Einstein)”

In this example, r belongs in the interface because it specifies the circle to be
drawn. n is less appropriate because it pertains to the details of how the circle
should be rendered.

Rather than clutter up the interface, it is better to choose the value of n adap-
tively, depending on circumference:

def circle(t, r):

circumference = 2 * math.pi * r

n = int(circumference / 4)

length = circumference / n

polygon(t, length, n)

Now the number of segments is (approximately) circumference/4, so the length
of each segment is (approximately) 4, which is small enough that the circles look
good, but big enough to be efficient, and appropriate for any size circle.

4.7 Refactoring

When we wrote circle, we were able to re-use polygon because a many-sided
polygon is a good approximation of a circle. But arc is not as cooperative; we
can’t use polygon or circle to draw an arc.

An alternative is to start with a copy of polygon and transform it into arc.
The result might look like this:

def arc(t, r, angle):

arclength = 2 * math.pi * r * angle / 360

n = int(arclength / 4)

42 Chapter 4. Case study: interface design

length = arclength / n

step_angle = float(angle) / n

for i in range(n):

fd(t, length)

lt(t, step_angle)

The second half of this function looks like polygon, but we can’t re-use polygon
without changing the interface. We could generalize polygon to take an angle
as a third argument, but then polygon would no longer be an appropriate name!
Instead, let’s call the more general function polyline:

def polyline(t, length, n, angle):

for i in range(n):

fd(t, length)

lt(t, angle)

Now we can rewrite polygon and arc to use polyline:

def polygon(t, length, n):

angle = 360.0 / n

polyline(t, length, n, angle)

def arc(t, r, angle):

arclength = 2 * math.pi * r * angle / 360

n = int(arclength / 4)

length = arclength / n

polyline(t, length, n, angle/n)

Finally, we can rewrite circle to use arc:

def circle(t, r):

arc(t, r, 360.0)

This process—rearranging a program to improve function interfaces and facil-
itate code re-use—is called refactoring. In this case, we noticed that there
was similar code in arc and polygon, so we “factored it out” into polyline.

If we had planned ahead, we might have written polyline first and avoided
refactoring, but often you don’t know enough at the beginning of a project to
design all the interfaces. Once you start coding, you understand the problem
better. Sometimes refactoring is a sign that you have learned something.

4.8 A development plan

A development plan is a process for writing programs. The process we used
in this case study is what I call “EGR” for “encapsulation, generalization and
refactoring.” The steps of EGR are:

4.9. docstring 43

1. Start by writing a small program with no function definitions.

2. Once you get the program working, encapsulate it in a function and give
it a name.

3. Generalize the function by adding appropriate parameters.

4. Repeat steps 1–3 until you have a set of working functions. Copy and
paste working code to avoid retyping (and re-debugging).

5. Look for opportunities to improve the program by refactoring. For exam-
ple, if you have similar code in several places, consider factoring it into an
appropriately general function.

EGR has some drawbacks—we will see alternatives later—but it can be useful
if you don’t know ahead of time how to divide the program into functions. This
approach lets you design as you go along.

4.9 docstring

A docstring is a string at the beginning of a function that explains the interface
(“doc” is short for “documentation”). Here is an example:

def polyline(t, length, n, angle):

"""Draw n line segments with the given length and

angle (in degrees) between them. t is a turtle.

"""

for i in range(n):

fd(t, length)

lt(t, angle)

This docstring is a triple-quoted string, also known as a multi-line string because
the triple quotes allow the string to span more than one line.

It is terse, but it contains the essential information someone would need to use
this function. It explains concisely what the function does (without getting into
the details of how it does it). It explains what effect each parameter has on the
behavior of the function and what type each parameter should be (if it is not
obvious).

Writing this kind of documentation is an important part of interface design. A
well-designed interface should be simple to explain; if you are having a hard
time explaining one of your functions, that might mean that the interface could
be improved.

44 Chapter 4. Case study: interface design

4.10 Glossary

instance: A member of a set. The TurtleWorld in this chapter is a member of
the set of TurtleWorlds.

loop: A part of a program that can execute repeatedly.

encapsulation: The process of transforming a sequence of statements into a
function definition.

generalization: The process of replacing something unnecessarily specific (like
a number) with something appropriately general (like a variable or param-
eter).

interface: A description of how to use a function, including the name and
descriptions of the arguments and return value.

development plan: A process for writing programs.

docstring: A string that appears in a function definition to document the
function’s interface.

4.11 Exercises

1. Write appropriate docstrings for polygon and circle.

2. Draw a stack diagram that shows the state of the program while executing
circle(bob, 100). You can do the arithmetic by hand or add print

statements to the code.

3. Write an appropriately general set of functions that can draw flowers like
this:

4. Write an appropriately general set of functions that can draw shapes like
this:

Chapter 5

Conditionals and recursion

5.1 Modulus operator

The modulus operator works on integers and yields the remainder when the
first operand is divided by the second. In Python, the modulus operator is a
percent sign (%). The syntax is the same as for other operators:

>>> quotient = 7 / 3

>>> print quotient

2

>>> remainder = 7 % 3

>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another—if x % y is zero, then x

is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example,
x % 10 yields the right-most digit of x (in base 10). Similarly x % 100 yields
the last two digits.

5.2 Boolean expressions

A boolean expression is an expression that is either true or false. The follow-
ing examples use the operator ==, which compares two operands and produces
True if they are equal and False otherwise:

46 Chapter 5. Conditionals and recursion

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not
strings:

>>> type(True)

<type ’bool’>

>>> type(False)

<type ’bool’>

The == operator is one of the comparison operators; the others are:

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols
are different from the mathematical symbols. A common error is to use a single
equal sign (=) instead of a double equal sign (==). Remember that = is an
assignment operator and == is a comparison operator. There is no such thing
as =< or =>.

5.3 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning)
of these operators is similar to their meaning in English. For example, x > 0

and x < 10 is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the
number is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true
if x > y is false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean ex-
pressions, but Python is not very strict. Any nonzero number is interpreted as
“true.”

>>> 17 and True

True

This flexibility can be useful, but there are some subtleties to it that might be
confusing. You might want to avoid it (unless you know what you are doing).

5.4. Conditional execution 47

5.4 Conditional execution

In order to write useful programs, we almost always need the ability to check
conditions and change the behavior of the program accordingly. Conditional

statements give us this ability. The simplest form is the if statement:

if x > 0:

print ’x is positive’

The boolean expression after the if statement is called the condition. If it is
true, then the indented statement gets executed. If not, nothing happens.

if statements have the same structure as function definitions: a header followed
by an indented block. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but
there has to be at least one. Occasionally, it is useful to have a body with no
statements (usually as a place keeper for code you haven’t written yet). In that
case, you can use the pass statement, which does nothing.

if x < 0:

pass # need to handle negative values!

5.5 Alternative execution

A second form of the if statement is alternative execution, in which there are
two possibilities and the condition determines which one gets executed. The
syntax looks like this:

if x%2 == 0:

print ’x is even’

else:

print ’x is odd’

If the remainder when x is divided by 2 is 0, then we know that x is even, and the
program displays a message to that effect. If the condition is false, the second
set of statements is executed. Since the condition must be true or false, exactly
one of the alternatives will be executed. The alternatives are called branches,
because they are branches in the flow of execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two
branches. One way to express a computation like that is a chained condi-

tional:

48 Chapter 5. Conditionals and recursion

if x < y:

print ’x is less than y’

elif x > y:

print ’x is greater than y’

else:

print ’x and y are equal’

elif is an abbreviation of “else if.” Again, exactly one branch will be executed.
There is no limit on the number of elif statements. If there is an else clause,
it has to be at the end, but there doesn’t have to be one.

if choice == ’A’:

functionA()

elif choice == ’B’:

functionB()

elif choice == ’C’:

functionC()

Each condition is checked in order. If the first is false, the next is checked,
and so on. If one of them is true, the corresponding branch executes, and the
statement ends. Even if more than one condition is true, only the first true
branch executes.

5.7 Nested conditionals

One conditional can also be nested within another. We could have written the
trichotomy example like this:

if x == y:

print ’x and y are equal’

else:

if x < y:

print ’x is less than y’

else:

print ’x is greater than y’

The outer conditional contains two branches. The first branch contains a simple
statement. The second branch contains another if statement, which has two
branches of its own. Those two branches are both simple statements, although
they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent,
nested conditionals become difficult to read very quickly. In general, it is a
good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements.
For example, we can rewrite the following code using a single conditional:

5.8. Recursion 49

if 0 < x:

if x < 10:

print ’x is a positive single digit.’

The print statement is executed only if we make it past both conditionals, so
we can get the same effect with the and operator:

if 0 < x and x < 10:

print ’x is a positive single digit.’

5.8 Recursion

It is legal for one function to call another; it is also legal for a function to call
itself. It may not be obvious why that is a good thing, but it turns out to be
one of the most magical things a program can do. For example, look at the
following function:

def countdown(n):

if n <= 0:

print ’Blastoff!’

else:

print n

countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and
then calls a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it
outputs the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater
than 0, it outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n

is greater than 0, it outputs the value 1, and then calls
itself...

The execution of countdown begins with n=0, and
since n is not greater than 0, it outputs the word,
“Blastoff!” and then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

50 Chapter 5. Conditionals and recursion

The countdown that got n=3 returns.

And then you’re back in main . So, the total output looks like this:

3

2

1

Blastoff!

A function that calls itself is recursive; the process is called recursion.

As another example, we can write a function that prints a string n times.

def print_n(s, n):

if n <= 0:

return

print s

print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow of execution im-
mediately returns to the caller, and the remaining lines of the function are not
executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays
s and then calls itself to display s n−1 additional times. So the number of lines
of output is 1 + (n - 1) which, if you do your algebra right, comes out to n.

For simple examples like this, it is probably easier to use a for loop. But we
will see examples later that are hard to write with a for loop and easy to write
with recursion, so it is good to start early.

5.9 Stack diagrams for recursive functions

In Section 3.10, we used a stack diagram to represent the state of a program
during a function call. The same kind of diagram can help interpret a recursive
function.

Every time a function gets called, Python creates a new function frame, which
contains the function’s local variables and parameters. For a recursive function,
there might be more than one frame on the stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

5.10. Infinite recursion 51

__main__

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

As usual, the top of the stack is the frame for main . It is empty because we
did not create any variables in main or pass any arguments to it.

The four countdown frames have different values for the parameter n. The
bottom of the stack, where n=0, is called the base case. It does not make a
recursive call, so there are no more frames.

Draw a stack diagram for print n called with s = ’Hello’ and n=4.

5.10 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever,
and the program never terminates. This is known as infinite recursion, and
it is generally not a good idea. Here is a minimal program with an infinite
recursion:

def recurse():

recurse()

In most programming environments, a program with infinite recursion does
not really run forever. Python reports an error message when the maximum
recursion depth is reached:

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

.

.

.

File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter.
When the error occurs, there are 1000 recurse frames on the stack!

52 Chapter 5. Conditionals and recursion

5.11 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept
no input from the user. They just do the same thing every time.

Python provides a built-in function called raw input that gets input from the
keyboard. When this function is called, the program stops and waits for the
user to type something. When the user presses Return or Enter, the program
resumes and raw input returns what the user typed as a string.

>>> input = raw_input()

What are you waiting for?

>>> print input

What are you waiting for?

Before calling raw input, it is a good idea to print a prompt telling the user
what to input. raw input takes a prompt as an argument:

>>> name = raw_input(’What...is your name?\n’)

What...is your name?

Arthur, King of the Britons!

>>> print name

Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a
special character that causes a line break. That’s why the user’s input appears
below the prompt.

If you expect the user to type an integer, you can try to convert the return value
to int:

>>> prompt = ’What...is the airspeed velocity of an unladen swallow?\n’

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

But if the user types something other than a string of digits, you get an excep-
tion:

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int()

We will see how to handle this kind of error later.

5.12. Debugging 53

5.12 Debugging

The traceback Python displays when an error occurs contains a lot of informa-
tion, but it can be overwhelming, especially when there are many frames on the
stack. The most useful pieces are usually:

• what kind of error it was, and

• where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace
errors can be tricky because spaces and tabs are invisible and we are used to
ignoring them.

>>> x = 5

>>> y = 6

File "<stdin>", line 1

y = 6

^

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But
the error message points to y, which is misleading. In general, error messages
indicate where the error was discovered, but the actual error might be earlier in
the code, sometimes on a previous line.

The same is true of run time errors. Suppose you are trying to compute a signal-
to-noise ratio in decibels. The formula is SNRdb = 10 log 10(Psignal/Pnoise). In
Python, you might write something like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power / noise_power

decibels = 10 * math.log10(ratio)

print decibels

But when you run it, you get an error message:

Traceback (most recent call last):

File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)

OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line.
To find the real error, it might be useful to print the value of ratio, which
turns out to be 0. The problem is in line 4, because dividing two integers does
floor division. The solution is to represent signal power and noise power with
floating-point values.

54 Chapter 5. Conditionals and recursion

And that brings me to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, but that
is often not where it was caused.

5.13 Glossary

modulus operator: An operator, denoted with a percent sign (%), that works
on integers and yields the remainder when one number is divided by an-
other.

boolean expression: An expression whose value is either True or False.

comparison operator: One of the operators that compares its operands: ==,
!=, >, <, >=, and <=.

logical operator: One of the operators that combines boolean expressions:
and, or, and not.

conditional statement: A statement that controls the flow of execution de-
pending on some condition.

condition: The boolean expression in a conditional statement that determines
which branch is executed.

compound statement: A statement that consists of a header and a body.
The header ends with a colon (:). The body is indented relative to the
header.

body: The sequence of statements within a compound statement.

branch: One of the alternative sequences of statements in a conditional state-
ment.

chained conditional: A conditional statement with a series of alternative
branches.

recursion: The process of calling the function that is currently executing.

base case: A conditional branch in a recursive function that does not make a
recursive call.

infinite recursion: A function that calls itself recursively without ever reach-
ing the base case. Eventually, an infinite recursion causes a runtime error.

5.14. Exercises 55

5.14 Exercises

1. Write a function that draws grids like this in any size1:

+ - - - - - + - - - - - +

| | |

| | |

| | |

| | |

+ - - - - - + - - - - - +

| | |

| | |

| | |

| | |

+ - - - - - + - - - - - +

Hint: to print more than one value on a line, you can print a comma-
separated sequence:

print ’+’, ’-’

If the sequence ends with a comma, Python leaves the line unfinished, so
the value printed next appears on the same line.

print ’+’,

print ’-’

The output of these statements is ’+ -’.

The following exercises use TurtleWorld from Chapter 4:

1. Read the following function and see if you can figure out what it does.
Then run it (see the examples in Chapter 4).

def draw(t, length, n):

if n == 0:

return

angle = 50

fd(t, length*n)

lt(t, angle)

draw(t, length, n-1)

rt(t, 2*angle)

draw(t, length, n-1)

lt(t, angle)

bk(t, length*n)

1Based on an exercise in Oualline, Practical C Programming, Third Edition, O’Reilly
(1997)

56 Chapter 5. Conditionals and recursion

2. The Koch curve is a fractal that looks something like this:

To draw a Koch curve with length x, all you have to do is

(a) Draw a Koch curve with length x/3.

(b) Turn left 60 degrees.

(c) Draw a Koch curve with length x/3.

(d) Turn right 120 degrees.

(e) Draw a Koch curve with length x/3.

(f) Turn left 60 degrees.

(g) Draw a Koch curve with length x/3.

The only exception is if x is less than 2. In that case, you can just draw
a straight line with length x.

Write a function called koch that takes a turtle and a length as parameters,
and that uses the turtle to draw a Koch curve with the given length.

Then write a function called snowflake that draws three Koch curves to
make the outline of a snowflake.

Chapter 6

Fruitful functions

6.1 Return values

Some of the built-in functions we have used, such as the math functions, produce
results. Calling the function generates a new value, which we usually assign to
a variable or use as part of an expression.

e = math.exp(1.0)

height = radius * math.sin(radians)

All of the functions we have written so far are void; they print something or
move turtles around, but their return value is None.

In this chapter, we are (finally) going to write fruitful functions. The first
example is area, which returns the area of a circle with the given radius:

def area(radius):

temp = math.pi * radius**2

return temp

We have seen the return statement before, but in a fruitful function the return
statement includes a return value. This statement means: “Return immediately
from this function and use the following expression as a return value.” The
expression provided can be arbitrarily complicated, so we could have written
this function more concisely:

def area(radius):

return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging
easier.

58 Chapter 6. Fruitful functions

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

def absolute_value(x):

if x < 0:

return -x

else:

return x

Since these return statements are in an alternative conditional, only one will
be executed.

As soon as a return statement executes, the function terminates without execut-
ing any subsequent statements. Code that appears after a return statement,
or any other place the flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through
the program hits a return statement. For example:

def absolute_value(x):

if x < 0:

return -x

elif x > 0:

return x

This program is not correct because if x happens to be 0, neither condition is
true, and the function ends without hitting a return statement. If the flow of
execution gets to the end of a function, the return value is None, which is not
the absolute value of 0.

>>> print absolute_value(0)

None

Exercise 6.1. Write a compare function that returns 1 if x > y, 0 if x == y,
and -1 if x < y.

6.2 Incremental development

As you write larger functions, you might start find yourself spending more time
debugging.

To deal with increasingly complex programs, you might want to try a process
called incremental development. The goal of incremental development is to
avoid long debugging sessions by adding and testing only a small amount of
code at a time.

As an example, suppose you want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem,
the distance is:

6.2. Incremental development 59

distance =
√

(x2 − x1)2 + (y2 − y1)2

The first step is to consider what a distance function should look like in Python.
In other words, what are the inputs (parameters) and what is the output (return
value)?

In this case, the two points are the inputs, which you can represent using four
parameters. The return value is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(x1, y1, x2, y2):

return 0.0

Obviously, this version doesn’t compute distances; it always returns zero. But
it is syntactically correct, and it runs, which means that you can test it before
you make it more complicated.

To test the new function, call it with sample arguments:

>>> distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing
a function, it is useful to know the right answer.

At this point we have confirmed that the function is syntactically correct, and
we can start adding code to the body. A reasonable next step is to find the
differences x2−x1 and y2−y1. The next version stores those values in temporary
variables and prints them.

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

print ’dx is’, dx

print ’dy is’, dy

return 0.0

If the function is working, it should display ’dx is 3’ and ’dy is 4’. If so,
we know that the function is getting the right arguments and performing the
first computation correctly. If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

60 Chapter 6. Fruitful functions

print ’dsquared is: ’, dsquared

return 0.0

Again, you would run the program at this stage and check the output (which
should be 25).

Finally, you can use math.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

result = math.sqrt(dsquared)

return result

If that works correctly, you are done. Otherwise, you might want to print the
value of result before the return statement.

The final version of the function doesn’t display anything when it runs; it only
returns a value. The print statements we wrote are useful for debugging, but
once you get the function working, you should remove them. Code like that is
called scaffolding because it is helpful for building the program but is not part
of the final product.

When you start out, you should add only a line or two of code at a time. As
you gain more experience, you might find yourself writing and debugging bigger
chunks. Either way, incremental development can save you a lot of debugging
time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At
any point, if there is an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values so you can display
and check them.

3. Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

Exercise 6.2. Use incremental development to write a function called
hypotenuse that returns the length of the hypotenuse of a right triangle given
the lengths of the two legs as arguments. Record each stage of the development
process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another.
This ability is called composition.

6.4. Boolean functions 61

As an example, we’ll write a function that takes two points, the center of the
circle and a point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp. The first step is to find the radius of the circle,
which is the distance between the two points. Fortunately, there is a function,
distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius:

result = area(radius)

Wrapping that up in a function, we get:

def circle_area(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp)

result = area(radius)

return result

The temporary variables radius and result are useful for development and
debugging, but once the program is working, we can make it more concise by
composing the function calls:

def circle_area(xc, yc, xp, yp):

return area(distance(xc, yc, xp, yp))

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated
tests inside functions. For example:

def is_divisible(x, y):

if x % y == 0:

return True

else:

return False

It is common to give boolean functions names that sound like yes/no questions;
is divisible returns either True or False to indicate whether x is divisible by
y.

Here is an example:

>>> is_divisible(6, 4)

False

>>> is_divisible(6, 3)

True

62 Chapter 6. Fruitful functions

The result of the == operator is a boolean, so we can write the function more
concisely by returning it directly:

def is_divisible(x, y):

return x % y == 0

Boolean functions are often used in conditional statements:

if is_divisible(x, y):

print ’x is divisible by y’

It might be tempting to write something like:

if is_divisible(x, y) == True:

print ’x is divisible by y’

But the extra comparison is unnecessary.
Exercise 6.3. Write a function is between(x, y, z) that returns True if
x ≤ y ≤ z or False otherwise.

6.5 More recursion

We have only covered a small subset of Python, but you might be interested
to know that this subset is a complete programming language, which means
that anything that can be computed can be expressed in this language. Any
program ever written could be rewritten using only the language features you
have learned so far (actually, you would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing,
one of the first computer scientists (some would argue that he was a math-
ematician, but a lot of early computer scientists started as mathematicians).
Accordingly, it is known as the Turing Thesis. If you take a course on the
Theory of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools you have learned so
far, we’ll evaluate a few recursively defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the definition
contains a reference to the thing being defined. A truly circular definition is not
very useful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the factorial function, denoted with the
symbol !, you might get something like this:

6.5. More recursion 63

0! = 1

n! = n(n − 1)!

This definition says that the factorial of 0 is 1, and the factorial of any other
value, n, is n multiplied by the factorial of n − 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together,
3! equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a
Python program to evaluate it. The first step is to decide what the parameters
should be. In this case it should be clear that factorial has a single parameter:

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):

if n == 0:

return 1

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n − 1 and then multiply it by n:

def factorial(n):

if n == 0:

return 1

else:

recurse = factorial(n-1)

result = n * recurse

return result

The flow of execution for this program is similar to the flow of countdown in
Section 5.8. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial
of n-1...

Since 1 is not 0, we take the second branch and calculate
the factorial of n-1...

Since 0 is 0, we take the first branch and return
1 without making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and
the result is returned.

64 Chapter 6. Fruitful functions

The return value (1) is multiplied by n, which is 2, and the result is
returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes
the return value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

n 3 recurse 2

recurse 1

recurse 1 1return

2return

6return

__main__

factorial

n 2

n 1

n 0

factorial

factorial

factorial
1

1

2

6

The return values are shown being passed back up the stack. In each frame, the
return value is the value of result, which is the product of n and recurse.

In the last frame, the local variables recurse and result do not exist, because
the branch that creates them did not execute.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly
become labyrinthine. An alternative is what I call the “leap of faith.” When you
come to a function call, instead of following the flow of execution, you assume
that the function works correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in func-
tions. When you call math.cos or math.exp, you don’t examine the bodies of
those functions. You just assume that they work because the people who wrote
the built-in functions were good programmers.

The same is true when you call one of your own functions. For example, in
Section 6.4, we wrote a function called is divisible that determines whether
one number is divisible by another. Once we have convinced ourselves that this
function is correct—examining the code and testing—we can use the function
without looking at the code again.

6.7. One more example 65

The same is true of recursive programs. When you get to the recursive call,
instead of following the flow of execution, you should assume that the recursive
call works (yields the correct result) and then ask yourself, “Assuming that I
can find the factorial of n − 1, can I compute the factorial of n?” In this case,
it is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when
you haven’t finished writing it, but that’s why it’s called a leap of faith!

6.7 One more example

After factorial, the most common example of a recursively defined mathe-
matical function is fibonacci, which has the following definition:

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2);

Translated into Python, it looks like this:

def fibonacci (n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if you assume that the
two recursive calls work correctly, then it is clear that you get the right result
by adding them together.

6.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?

>>> factorial(1.5)

RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—
when n == 0. But if n is not an integer, we can miss the base case and recurse
forever.

66 Chapter 6. Fruitful functions

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From
there, it gets smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function to work
with floating-point numbers, or we can make factorial check the type of its
argument. The first option is called the gamma function and it’s a little beyond
the scope of this book. So we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument.
While we’re at it, we can also make sure the argument is positive:

def factorial (n):

if not isinstance(n, int):

print ’Factorial is only defined for integers.’

return None

elif n < 0:

print ’Factorial is only defined for positive integers.’

return None

elif n == 0:

return 1

else:

return n * factorial(n-1)

Now we have three base cases. The first catches nonintegers and the second
catches negative integers. In both cases, the program prints an error message
and returns None to indicate that something went wrong:

>>> factorial(’fred’)

Factorial is only defined for integers.

None

>>> factorial(-2)

Factorial is only defined for positive integers.

None

If we get past both checks, then we know that n is a positive integer, and we
can prove that the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first
two conditionals act as guardians, protecting the code that follows from val-
ues that might cause an error. The guardians make it possible to prove the
correctness of the code.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for
debugging. If a function is not working, there are three possibilities to consider:

6.9. Debugging 67

• There is something wrong with the arguments the function is getting.

• There is something wrong with the function.

• There is something wrong with the return value or the way it is being
used.

To rule out the first possibility, you can add a print statement at the beginning
of the function and display the values of the parameters (and maybe their types).

If the parameters look good, add a print statement before each return state-
ment that displays the return value. If possible, check the result by hand. If
necessary, call the function with special values where you know what the result
should be (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the
return value is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make
the flow of execution more visible. For example, here is a version of factorial
with print statements:

def factorial(n):

space = ’ ’ * (4 * n)

print space, ’factorial’, n

if n == 0:

print space, ’returning 1’

return 1

else:

recurse = factorial(n-1)

result = n * recurse

print space, ’returning’, result

return result

space is a string of space characters that controls the indentation of the output.
Here is the result of factorial(5) :

factorial 5

factorial 4

factorial 3

factorial 2

factorial 1

factorial 0

returning 1

returning 1

returning 2

returning 6

returning 24

returning 120

68 Chapter 6. Fruitful functions

If you are confused about the flow of execution, this kind of output can be
helpful. It takes some time to develop effective scaffolding, but according to the
Fifth Theorem of Debugging:

A little bit of scaffolding can save a lot of debugging.

6.10 Glossary

temporary variable: A variable used to store an intermediate value in a com-
plex calculation.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

None: A special value returned by functions that have no return statement or
a return statement without an argument.

incremental development: A program development plan intended to avoid
debugging by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of
the final version.

guardian: A programming pattern that uses a conditional statement to check
for and handle circumstances that might cause an error.

Chapter 7

Iteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to
the same variable. A new assignment makes an existing variable refer to a new
value (and stop referring to the old value).

bruce = 5

print bruce,

bruce = 7

print bruce

The output of this program is 5 7, because the first time bruce is printed, its
value is 5, and the second time, its value is 7. The comma at the end of the first
print statement suppresses the newline, which is why both outputs appear on
the same line.

Here is what multiple assignment looks like in a state diagram:

7

5
bruce

With multiple assignment it is especially important to distinguish between an
assignment operation and a statement of equality. Because Python uses the
equal sign (=) for assignment, it is tempting to interpret a statement like a = b

as a statement of equality. It is not!

First, equality is a symmetric relation and assignment is not. For example, in
mathematics, if a = 7 then 7 = a. But in Python, the statement a = 7 is legal
and 7 = a is not.

70 Chapter 7. Iteration

Furthermore, in mathematics, a statement of equality is either true or false, for
all time. If a = b now, then a will always equal b. In Python, an assignment
statement can make two variables equal, but they don’t have to stay that way:

a = 5

b = a # a and b are now equal

a = 3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they
are no longer equal.

Although multiple assignment is frequently helpful, you should use it with cau-
tion. If the values of variables change frequently, it can make the code difficult
to read and debug.

7.2 Updating variables

One of the most common forms of multiple assignment is an update, where the
new value of the variable depends on the old.

x = x+1

This means “get the current value of x, add one, and then update x with the
new value.”

If you try to update a variable that doesn’t exist, you get an error, because
Python evaluates the right side before it assigns a value to x:

>>> x = x+1

NameError: name ’x’ is not defined

Before you can update a variable, you have to initialize it, usually with a simple
assignment:

>>> x = 0

>>> x = x+1

Updating a variable by adding 1 is called an increment; subtracting 1 is called
a decrement.

7.3 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or
similar tasks without making errors is something that computers do well and
people do poorly.

7.3. The while statement 71

We have seen two programs, print n and countdown, that use recursion to per-
form repetition, which is also called iteration. Because iteration is so common,
Python provides several language features to make it easier. One is the for

statement we saw in Section 4.2. We’ll get back to that later.

Another is the while statement. Here is a version of countdown that uses a
while statement:

def countdown(n):

while n > 0:

print n

n = n-1

print ’Blastoff!’

You can almost read the while statement as if it were English. It means, “While
n is greater than 0, display the value of n and then reduce the value of n by 1.
When you get to 0, display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution
at the next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to
the top.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we
know that the value of n is finite, and we can see that the value of n gets smaller
each time through the loop, so eventually we have to get to 0. In other cases,
it is not so easy to tell:

def sequence(n):

while n != 1:

print n,

if n%2 == 0: # n is even

n = n/2

else: # n is odd

n = n*3+1

72 Chapter 7. Iteration

The condition for this loop is n != 1, so the loop will continue until n is 1,
which makes the condition false.

Each time through the loop, the program outputs the value of n and then checks
whether it is even or odd. If it is even, n is divided by 2. If it is odd, the value
of n is replaced with n*3+1. For example, if the argument passed to sequence

is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program terminates. For some particular
values of n, we can prove termination. For example, if the starting value is a
power of two, then the value of n will be even each time through the loop until
it reaches 1. The previous example ends with such a sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all
positive values of n. So far, no one has been able to prove it or disprove it!
Exercise 7.1. Rewrite the function print n from Section 5.8 using iteration
instead of recursion.

7.4 break

Sometimes you don’t know it’s time to end a loop until you get half way through
the body. In that case you can use the break statement to jump out of the loop.

For example, suppose you want to take input from the user until they type done.
You could write:

while True:

line = raw_input(’> ’)

if line == ’done’:

break

print line

print ’Done!’

The loop condition is True, which is always true, so the loop runs until it hits
the break statement.

Each time through, it prompts the user with an angle bracket. If the user
types done, the break statement exits the loop. Otherwise the program echos
whatever the user types and goes back to the top of the loop. Here’s a sample
run:

> not done

not done

> done

Done!

7.5. Square roots 73

This way of writing while loops is common because you can check the condition
anywhere in the loop (not just at the top) and you can express the stop condition
affirmatively (“stop when this happens”) rather than negatively (“keep going
until that happens.”).

7.5 Square roots

Loops are often used in programs that compute numerical results by starting
with an approximate answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose
that you want to know the square root of a. If you start with almost any
estimate, x, you can compute a better estimate with the following formula:

y =
x + a/x

2

For example, if a is 4 and x is 3:

>>> a = 4.0

>>> x = 3.0

>>> y = (x + a/x) / 2

>>> print y

2.16666666667

Which is closer to the correct answer (
√

4 = 2). If we repeat the process with
the new estimate, it gets even closer:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00641025641

After a few more updates, the estimate is almost exact:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00001024003

>>> x = y

>>> x = (x + a/x) / 2

>>> print y

2.00000000003

In general we don’t know ahead of time how many steps it takes to get to
the right answer, but we know when we get there because the estimate stops
changing:

74 Chapter 7. Iteration

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

When y == x, we can stop. Here is a loop that starts with an initial estimate,
x, and improves it until it stops changing:

while True:

print x

y = (x + a/x) / 2

if y == x:

break

x = y

For most values of a this works fine, but in general it is dangerous to test float
equality. Floating-point values are only approximately right: most rational
numbers, like 1/3, and irrational numbers, like

√
2, can’t be represented exactly

with a float.

Rather than checking whether x and y are exactly equal, it is safer to use
math.fabs to compute the absolute value, or magnitude, of the difference be-
tween them:

if math.fabs(y-x) < something_small:

break

Where something small has a value like 0.0000001 that determines how close
is close enough.
Exercise 7.2. Wrap this loop in a function called square root that takes a as
a parameter, chooses a reasonable value of x, and returns an estimate of the
square root of a.

7.6 Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for
solving a category of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to start with something
that is not an algorithm. When you learned to multiply single-digit numbers,
you probably memorized the multiplication table. In effect, you memorized 100
specific solutions. That kind of knowledge is not algorithmic.

7.7. Debugging 75

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10 − n as the second digit. This trick is a general solution for multiplying
any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellec-
tually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the hardest to express algorithmically. Understanding natural
language is a good example. We all do it, but so far no one has been able
to explain how we do it, at least not in the form of an algorithm.

7.7 Debugging

As you start writing bigger programs, you might find yourself spending more
time debugging. More code means more chances to make an error and more
place for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example,
if there are 100 lines in your program and you check them one at a time, it
would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program,
or near it, for an intermediate value you can check. Add a print statement (or
something else that has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the
program. If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you
have to search. After six steps (which is much less than 100), you would be
down to one or two lines of code.

At least in theory. In practice it is not always clear what the “middle of the
program” is and not always possible to check it. It doesn’t make sense to count
lines and find the exact midpoint. Instead, think about places in the program
where there might be errors and places where it is easy to put a check. Then
choose a spot where you think the chances are about the same that the bug is
before or after the check.

76 Chapter 7. Iteration

7.8 Glossary

multiple assignment: Making more than one assignment to the same variable
during the execution of a program.

update: An assignment where the new value of the variable depends on the
old.

initialize: An assignment that gives an initial value to a variable that will be
updated.

increment: An update that increases the value of a variable (often by one).

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either a recursive
function call or a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

7.9 Exercises

Exercise 7.3. To test the square root algorithm in this chapter, you could
compare it with math.sqrt. Write a function named test square root that
prints a table like this:

1.0 1.0 1.0 0.0

2.0 1.41421356237 1.41421356237 2.22044604925e-16

3.0 1.73205080757 1.73205080757 0.0

4.0 2.0 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16

9.0 3.0 3.0 0.0

The first column is a number, a; the second column is the square root of a
computed with the function from Exercise 7.2; the third column is the square
root computed by math.sqrt; the fourth column is the absolute value of the
difference between the two estimates.
Exercise 7.4. The built-in function eval takes a string and evaluates it using
the Python interpreter. For example:

>>> eval(’1 + 2 * 3’)

7

>>> import math

7.9. Exercises 77

>>> eval(’math.sqrt(5)’)

2.2360679774997898

>>> eval(’type(math.pi)’)

<type ’float’>

Write a function called eval loop that iteratively prompts the user, takes the
resulting input and evaluates it using eval, and prints the result.

It should continue until the user enters ’done’, and then return the value of the
last expression it evaluated.

78 Chapter 7. Iteration

Chapter 8

Strings

8.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a
time with the bracket operator:

>>> fruit = ’banana’

>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to
letter.

The expression in brackets is called an index. The index indicates which char-
acter in the sequence you want (hence the name).

But you might not get what you expect:

>>> print letter

a

For most people, the first letter of ’banana’ is b, not a. But for computer
scientists, the index is an offset from the beginning of the string, and the offset
of the first letter is zero.

>>> letter = fruit[0]

>>> print letter

b

So b is the 0th letter (“zero-eth”) of ’banana’, a is the 1th letter (“one-eth”),
and n is the 2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but
the value of the index has to be an integer. Otherwise you get:

80 Chapter 8. Strings

>>> letter = fruit[1.0]

TypeError: string indices must be integers

8.2 len

len is a built-in function that returns the number of characters in a string:

>>> fruit = ’banana’

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to try something like
this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in ’banana’ with the
index 6. Since we started counting at zero, the six letters are numbered 0 to 5.
To get the last character, you have to subtract 1 from length:

>>> last = fruit[length-1]

>>> print last

a

Alternatively, you can use negative indices, which count backward from the end
of the string. The expression fruit[-1] yields the last letter, fruit[-2] yields
the second to last, and so on.

8.3 Traversal with a for loop

A lot of computations involve processing a string one character at a time. Often
they start at the beginning, select each character in turn, do something to it,
and continue until the end. This pattern of processing is called a traversal.
One way to write a traversal is with a while statement:

index = 0

while index < len(fruit):

letter = fruit[index]

print letter

index = index + 1

This loop traverses the string and displays each letter on a line by itself. The
loop condition is index < len(fruit), so when index is equal to the length

8.4. String slices 81

of the string, the condition is false, and the body of the loop is not executed.
The last character accessed is the one with the index len(fruit)-1, which is
the last character in the string.
Exercise 8.1. Write a function that takes a string as an argument and displays
the letters backward, one per line.

Another way to write a traversal is with a for loop:

for char in fruit:

print char

Each time through the loop, the next character in the string is assigned to the
variable char. The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a
for loop to generate an abecedarian series (that is, in alphabetical order). In
Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings
are Jack, Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs
these names in order:

prefixes = ’JKLMNOPQ’

suffix = ’ack’

for letter in prefixes:

print letter + suffix

The output is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.
Exercise 8.2. Modify the program to fix this error.

8.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a
character:

>>> s = ’Monty Python’

>>> print s[0:5]

82 Chapter 8. Strings

Monty

>>> print s[6:13]

Python

The operator [n:m] returns the part of the string from the “n-eth” character to
the “m-eth” character, including the first but excluding the last. This behavior
is counterintuitive, but might help to imagine the indices pointing between the
characters, as in the following diagram:

fruit " b a n na a "
0 1 2 3 4 5 6index

If you omit the first index (before the colon), the slice starts at the beginning of
the string. If you omit the second index, the slice goes to the end of the string.
Thus:

>>> fruit = ’banana’

>>> fruit[:3]

’ban’

>>> fruit[3:]

’ana’

If the first index is greater than or equal to the second the result is an empty

string, represented by two quotation marks:

>>> fruit = ’banana’

>>> fruit[3:3]

’’

An empty string contains no characters and has length 0, but other than that,
it is the same as any other string.
Exercise 8.3. Given that fruit is a string, what does fruit[:] mean?

8.5 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the
intention of changing a character in a string. For example:

>>> greeting = ’Hello, world!’

>>> greeting[0] = ’J’

TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried
to assign. For now, an object is the same thing as a value, but we will refine
that definition later. An item is one of the values in a sequence.

8.6. A find function 83

The reason for the error is that strings are immutable, which means you can’t
change an existing string. The best you can do is create a new string that is a
variation on the original:

>>> greeting = ’Hello, world!’

>>> new_greeting = ’J’ + greeting[1:]

>>> print new_greeting

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no
effect on the original string.

8.6 A find function

What does the following function do?

def find(word, letter):

index = 0

while index < len(word):

if word[index] == letter:

return index

index = index + 1

return -1

In a sense, find is the opposite of the [] operator. Instead of taking an index
and extracting the corresponding character, it takes a character and finds the
index where that character appears. If the character is not found, the function
returns -1.

This is the first example we have seen of a return statement inside a loop.
If word[index] == letter, the function breaks out of the loop and returns
immediately.

If the character doesn’t appear in the string, the program exits the loop normally
and returns -1.

This pattern of computation—traversing a sequence and returning when we find
what we are looking for—is a called a search.
Exercise 8.4. Modify find so that it has a third parameter, the index in word

where it should start looking.

8.7 Looping and counting

The following program counts the number of times the letter a appears in a
string:

84 Chapter 8. Strings

word = ’banana’

count = 0

for letter in word:

if letter == ’a’:

count = count + 1

print count

This program demonstrates another pattern of computation called a counter.
The variable count is initialized to 0 and then incremented each time an a is
found. When the loop exits, count contains the result—the total number of a’s.
Exercise 8.5. Encapsulate this code in a function named count, and generalize
it so that it accepts the string and the letter as arguments.
Exercise 8.6. Rewrite this function so that instead of traversing the string, it
uses the three-parameter version of find from the previous section.

8.8 string methods

A method is similar to a function—it takes arguments and returns a value—
but the syntax is different. For example, the method upper takes a string and
returns a new string with all uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax
word.upper().

>>> word = ’banana’

>>> new_word = word.upper()

>>> print new_word

BANANA

This form of dot notation specifies the name of the method, upper, and the
name of the string to apply the method to, word. The parentheses indicate that
this method has no parameters.

A method call is called an invocation; in this case, we would say that we are
invoking upper on the word.

As it turns out, there is a string method named find that is remarkably similar
to the function we wrote:

>>> word = ’banana’

>>> index = word.find(’a’)

>>> print index

1

In this example, we invoke find on word and pass the letter we are looking for
as a parameter.

8.9. The in operator 85

Actually, the find method is more general than our function: it can find sub-
strings, not just characters:

>>> word.find(’na’)

2

It can take as a second argument the index where it should start:

>>> word.find(’na’, 3)

4

And as a third argument where it should stop:

>>> name = ’bob’

>>> name.find(’b’, 1, 2)

-1

This search fails because b does not appear in the index range from 1 to 2 (not
including 2).
Exercise 8.7. There is a string method called count that is similar to the
function in the previous exercise. Read the documentation of this method and
write an invocation that counts the number of as in ’banana’. Hint: there are
three.

8.9 The in operator

The operators we have seen so far are all special characters like + and *, but
there are a few operators that are words. in is a boolean operator that takes
two strings and returns True if the first appears as a substring in the second:

>>> ’an’ in ’banana’

True

>>> ’c’ in ’banana’

False

For example, the following function prints all the letters from word1 that also
appear in word2:

def in_both(word1, word2):

for letter in word1:

if letter in word2:

print letter

With well-chosen variable names, Python sometimes reads like English. You
could read this loop, “for (each) letter in (the first) word, if (the) letter (appears)
in (the second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:

86 Chapter 8. Strings

>>> in_both(’apples’, ’oranges’)

a

e

s

8.10 String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == ’banana’:

print ’Yes, we have no bananas!’

Other comparison operations are useful for putting words in alphabetical order:

if word < ’banana’:

print ’Your word,’ + word + ’, comes before banana.’

elif word > ’banana’:

print ’Your word,’ + word + ’, comes after banana.’

else:

print ’Yes, we have no bananas!’

Python does not handle uppercase and lowercase letters the same way that
people do. All the uppercase letters come before all the lowercase letters, so:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard
format, such as all lowercase, before performing the comparison. The more
difficult problem is making the program realize that zebras are not fruit.

8.11 Debugging

When you use indices to traverse the values in a sequence, it is tricky to get the
beginning and end of the traversal right. Here is a function that is supposed
to compare two words and return True if one of the words is the reverse of the
other, but it contains two errors:

def is_reverse(word1, word2):

if len(word1) != len(word2):

return False

i = 0

j = len(word2)

while j > 0:

8.11. Debugging 87

if word1[i] != word2[j]:

return False

i = i+1

j = j-1

return True

The first if statement checks whether the words are the same length. If not,
we can return False immediately and then, for the rest of the function, we
can assume that the words are the same length. This is another example of a
guardian.

i and j are indices: i traverses word1 forward while j traverses word2 backward.
If we find two letters that don’t match, we can return False immediately. If we
get through the whole loop and all the letters match, we return True.

If we test this function with the words “pots” and “spot”, we expect the return
value True, but we get an IndexError:

>>> is_reverse(’pots’, ’stop’)

...

File "reverse.py", line 15, in is_reverse

if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print the values of the
indices immediately before the line where the error appears.

while j > 0:

print i, j

if word1[i] != word2[j]:

return False

i = i+1

j = j-1

Now when I run the program again, I get more information:

>>> is_reverse(’pots’, ’stop’)

0 4

...

IndexError: string index out of range

The first time through the loop, the value of j is 4, which is out of range for
the string ’pots’. The index of the last character is 3, so the initial value for
j should be lenword2-1.

If I fix that error and run the program again, I get:

88 Chapter 8. Strings

>>> is_reverse(’pots’, ’stop’)

0 3

1 2

2 1

True

This time we get the right answer, but it looks like the loop only ran three
times, which is suspicious. To get a better idea of what is happening, it is useful
to draw a state diagram. During the first iteration, the frame for is reverse

looks like this:

i 0 j 3

word1 ’pots’ word2 ’stop’

I took a little license by arranging the variables in the frame and adding dotted
lines to show that the values of i and j indicate characters in word1 and word2.
Exercise 8.8. Starting with this diagram, execute the program on paper, chang-
ing the values of i and j during each iteration. Find and fix the second error
in this function.

8.12 Glossary

object: Something a variable can refer to. For now, you can use “object” and
“value” interchangeably.

sequence: An ordered set; that is, a set of values where each value is identified
by an integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character
in a string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two
quotation marks.

immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing a similar
operation on each.

search: A pattern of traversal that stops when it finds what it is looking for.

8.12. Glossary 89

counter: A variable used to count something, usually initialized to zero and
then incremented.

method: A function that is associated with an object and called using dot
notation.

invocation: A statement that calls a method.

90 Chapter 8. Strings

Chapter 9

Case study: word play

9.1 Reading word lists

For the exercises in this chapter we need a list of English words. There are lots
of word lists available on the Web, but the one most suitable for our purpose
is one of the word lists collected (and contributed to the public domain) by
Grady Ward as part of the Moby lexicon project. It is a list of 113,809 official
crosswords; that is, words that are considered valid in crossword puzzles and
other word games. In the Moby collection, the filename is 113809of.fic; I
include a copy of this file, with the simpler name words.txt, along with Swampy.

This file is in plain text, so you can open it with a text editor, but you can also
read it from Python. The built-in function open takes the name of the file as a
parameter and returns a file object you can use to read the file.

>>> fin = open(’words.txt’)

>>> print fin

<open file ’words.txt’, mode ’r’ at 0xb7f4b380>

fin is a common name for a file object used for input. Mode ’r’ indicates that
this file is open for reading.

The file object provides several methods for reading, including readline, which
reads characters from the file until it gets to a newline, and returns the result
as a string:

>>> fin.readline()

’aa\r\n’

The first word in this particular list is “aa,” which is a kind of lava. The sequence
\r\n represents two whitespace characters, a carriage return and a newline, that
separate this word from the next.

92 Chapter 9. Case study: word play

The file object keeps track of where it is in the file, so if you call readline
again, you get the next word:

>>> fin.readline()

’aah\r\n’

The next word is “aah,” which is a perfectly legitimate word, so stop looking
at me like that. Or, if it’s the whitespace that’s bothering you, we can get rid
of it with the string method strip:

>>> line = fin.readline()

>>> word = line.strip()

>>> print word

aahed

You can also use a file object as part of a for loop. This program reads
words.txt and prints each word, one per line:

fin = open(’words.txt’)

for line in fin:

word = line.strip()

print word

Exercise 9.1. Write a program that reads words.txt and prints only the words
with more than 20 characters (not counting whitespace).

9.2 Exercises

There are solutions to these exercises in the next section. You should at least
attempt each one before you read the solutions.
Exercise 9.2. In 1939 Ernest Vincent Wright published a 50,000 word novel
called Gadsby that does not contain the letter ’e’. Since ’e’ is the most common
letter in English, that’s not easy to do.

In fact, it is difficult to construct a solitary thought without using that most
common symbol. It is slow going at first, but with caution and hours of training
you can gradually gain facility.

All right, I’ll stop now.

Write a function called has no e that returns True if the given word doesn’t
have the letter “e” in it.

Modify your program from the previous section to print only the words that have
no “e” and compute the percentage of the words in the list have no “e.”
Exercise 9.3. Write a function named avoids that takes a word and a string
of forbidden letters, and that returns True if the word doesn’t use any of the
forbidden letters.

9.3. Search 93

Modify your program to prompt the user to enter a string of forbidded letters
and then print the number of words that don’t contain any of them. Can you
find a combination of 5 forbidden letters that excludes the smallest number of
words?
Exercise 9.4. Write a function named uses only that takes a word and a
string of letters, and that returns True if the word contains only letters in the
list. Can you make a sentence using only the letters acefhlo? Other than “Hoe
alfalfa?”
Exercise 9.5. Write a function named uses all that takes a word and a string
of required letters, and that returns True if the word uses all the required letters
at least once. How many words are there that use all the vowels aeiou? How
about aeiouy?
Exercise 9.6. Write a function called is abecedarian that returns True if the
letters in a word appear in alphabetical order (double letters are ok). How many
abecedarian words are there?
Exercise 9.7. A palindrome is a word that reads the same forward and
backward, like “rotator” and “noon.” Write a boolean function named
is palindrome that takes a string as a parameter and returns True if it is
a palindrome.

Modify your program from the previous section to print all of the palindromes
in the dictionary and then print the total number of palindromes.

9.3 Search

All of the exercises in the previous section have something in common; they can
be solved with the search pattern we saw in Section 8.6. The simplest example
is:

def has_no_e(word):

for letter in word:

if letter == ’e’:

return False

return True

The for loop traverses the characters in word. If we find the letter “e”, we can
immediately return False; otherwise we have to go to the next letter. If we exit
the loop normally, that means we didn’t find an “e”, so we return True.

You can write this function more concisely using the in operator, but I wanted
to start with this version because it demonstrates the logic of the search pattern.

avoids is a more general version of has no e but it has the same structure:

def avoids(word, forbidden):

for letter in word:

94 Chapter 9. Case study: word play

if letter in forbidden:

return False

return True

We can return False as soon as we find a forbidden letter; if we get to then end
of the loop, we can return True.

uses only is similar except that the sense of the condition is reversed:

def uses_only(word, available):

for letter in word:

if letter not in available:

return False

return True

Instead of a list of forbidden words, we have a list of available words. If we find
a letter in word that is not in available, we can return False.

uses all is also similar, except that we reverse the role of the word and the
string of letters:

def uses_all(word, required):

for letter in required:

if letter not in word:

return False

return True

Instead of traversing the letters in word, the loop traverses the required letters.
If any of the required letters do not appear in the word, we can return False.

If you were really thinking like a computer scientist, you would have recognized
that uses all was an instance of a previously-solved problem, and you would
have written:

def uses_all(word, required):

return uses_only(required, word)

This is an example of a program development method called problem recog-

nition, which means that you recognize the problem you are working on as
an instance of a previously-solved problem, and apply a previously-developed
solution.

9.4 Looping with indices

We could write the functions in the previous section with for loops, because we
only needed characters in the strings; we didn’t have to do anything with the
indices.

9.4. Looping with indices 95

For some of the other exercises, like is abecedarian, we need the indices, so it
is easier to use a while loop:

def is_abecedarian(word):

i = 0

while i < len(word)-1:

if word[i+1] < word[i]:

return False

i = i+1

return True

The loop starts at i=0 and ends when i=len(word)-1. Each time through
the loop, it compares the ith character (which you can think of as the current
character) to the i + 1th character (which you can think of as the next).

If the next character is less than (alphabetically before) the current one, then
we have discovered a break in the abecedarian trend, as we return False.

If we get to the end of the loop without finding a fault, then the word passes
the test. To convince yourself that the loop ends correctly, consider an example
like ’flossy’. The length of the word is 6, so the loop stops when i is 5, so the
last time the loop runs is when i is 4, which is the index of the second-to-last
character. So on the last iteration, it compares the second-to-last character to
the last, which is what we want.

The structure for is palindrome is similar except that we need two indices; one
starts at the begining and goes up; the other starts at the end and goes down.

def is_palindrome(word):

i = 0

j = len(word)-1

while i<j:

if word[i] != word[j]:

return False

i = i+1

j = j-1

return True

Or, if you noticed that this is an instance of a previously-solved problem, you
might have written:

def is_palindrome(word):

return is_reverse(word, word)

Assuming you did Exercise 8.8.

96 Chapter 9. Case study: word play

9.5 Debugging

Testing programs is hard. The functions in this chapter are relatively easy
to test because you can check the results by hand. Even so, it is somewhere
between difficult and impossible to choose a set of words that test for all possible
errors.

Taking has no e as an example, there are two obvious cases to check: words
that have an ’e’ should return False; words that don’t should return True. You
should have no trouble coming up with one of each.

Within each case, there are some less obvious subcases. Among the words that
have an ’e’, you should test words with an ’e’ at the beginning, the end, and
somewhere in the middle. You should test long words, short words, and very
short words, like the empty string. The empty string is an example of a special

case, which is one of the non-obvious cases where errors often lurk.

In addition to the test cases you generate, you can also test your program with
a word list like words.txt. By scanning the output, you might be able to catch
errors, but be careful: you might catch one kind of error (words that should
not be included, but are) and not another (words that should be included, but
aren’t).

In general, testing can help you find bugs, but it is not easy to generate a good
set of test cases, and even if you do, you can’t be sure your program is correct.

And that brings us to the XXX Theorem of Debugging:

Program testing can be used to show the presence of bugs, but never
to show their absence!

— Edsger W. Dijkstra

9.6 Glossary

file object: A value that represents an open file.

problem recognition: A way of solving a problem by expressing it as an in-
stance of a previously-solved problem.

special case: A test case that is atypical or non-obvious (and less likely to be
handled correctly).

Chapter 10

Lists

10.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters;
in a list, they can be any type. The values in list are called elements or
sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets ([and]):

[10, 20, 30, 40]

[’crunchy frog’, ’ram bladder’, ’lark vomit’]

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains
a string, a float, an integer, and (lo!) another list:

[’spam’, 2.0, 5, [10, 20]]

A list within another list is said to be nested.

A list that contains no elements is called an empty list; you can create one with
empty brackets, [].

Lists that contain consecutive integers are common, so Python provides a built-
in function to create them:

>>> range(1,5)

[1, 2, 3, 4]

range takes two arguments and returns a list that contains all the integers from
the first to the second, including the first but not including the second!

With one argument, range creates a list that starts at 0:

98 Chapter 10. Lists

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If there is a third argument, it specifies the space between successive values,
which is called the “step size.” This example counts from 1 to 10 by steps of 2:

>>> range(1, 10, 2)

[1, 3, 5, 7, 9]

As you might expect, you can assign list values to variables:

>>> cheeses = [’Cheddar’, ’Edam’, ’Gouda’]

>>> numbers = [17, 123]

>>> empty = []

>>> print cheeses, numbers, empty

[’Cheddar’, ’Edam’, ’Gouda’] [17, 123] []

10.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the
characters of a string—the bracket operator ([]). The expression inside the
brackets specifies the index. Remember that the indices start at 0:

>>> print cheeses[0]

Cheddar

Unlike strings, lists are mutable. When the bracket operator appears on the left
side of an assignment, it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print numbers

[17, 5]

You can think of a list as a relationship between indices and elements. This
relationship is called a mapping; each index “maps to” one of the elements.
Here is a state diagram showing cheeses, numbers and empty:

10.2. Lists are mutable 99

0

1

list

numbers 17

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

Lists are represented by boxes with the word “list” outside and the elements of
the list inside. cheeses refers to a list with three elements indexed 0, 1 and
2. numbers contains two elements; the diagram shows that the value of the
second element has been reassigned from 123 to 5. empty refers to a list with
no elements.

The bracket operator can appear anywhere in an expression. When it appears
on the left side of an assignment, it changes one of the elements in the list, so
the one-eth element of numbers, which used to be 123, is now 5.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an
IndexError.

• If an index has a negative value, it counts backward from the end of the
list.

The in operator also works on lists.

>>> cheeses = [’Cheddar’, ’Edam’, ’Gouda’]

>>> ’Edam’ in cheeses

True

>>> ’Brie’ in cheeses

False

100 Chapter 10. Lists

10.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The
syntax is the same as for strings:

for cheese in cheeses:

print cheese

This works well if you only need to read the elements of the list. But if you
want to write or update the elements, you need the indices. A common way to
do that is to combine the functions range and len:

for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number
of elements in the list. range returns a list of indices from 0 to n−1, where n is
the length of the list. Each time through the loop i gets the index of the next
element. The assignment statement in the body uses i to read the old value of
the element and to assign the new value.

A for loop over an empty list never executes the body:

for x in empty:

print ’This never happens.’

Although a list can contain another list, the nested list still counts as a single
element. The length of this list is four:

[’spam!’, 1, [’Brie’, ’Roquefort’, ’Pol le Veq’], [1, 2, 3]]

10.4 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list
[1, 2, 3] three times.

10.5. List slices 101

10.5 List slices

The slice operator also work on lists:

>>> t = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

>>> t[1:3]

[’b’, ’c’]

>>> t[:4]

[’a’, ’b’, ’c’, ’d’]

>>> t[3:]

[’d’, ’e’, ’f’]

If you omit the first index, the slice starts at the beginning. If you omit the
second, the slice goes to the end. So if you omit both, the slice is a copy of the
whole list.

>>> t[:]

[’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

A slice operator on the left side of an assignment can update multiple elements:

>>> t = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

>>> t[1:3] = [’x’, ’y’]

>>> print t

[’a’, ’x’, ’y’, ’d’, ’e’, ’f’]

10.6 List methods

Python provides methods that operate on lists. For example, append adds a
new element to the end of a list:

>>> t = [’a’, ’b’, ’c’]

>>> t.append(’d’)

>>> print t

[’a’, ’b’, ’c’, ’d’]

extend takes a list as an argument and appends all of the elements:

>>> t1 = [’a’, ’b’, ’c’]

>>> t2 = [’d’, ’e’]

>>> t1.extend(t2)

>>> print t1

[’a’, ’b’, ’c’, ’d’, ’e’]

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:

102 Chapter 10. Lists

>>> t = [’d’, ’c’, ’e’, ’b’, ’a’]

>>> t.sort()

>>> print t

[’a’, ’b’, ’c’, ’d’, ’e’]

List methods are all void; they modify the list and return None. If you acciden-
tally write t = t.sort(), you will be disappointed with the result.

10.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

def add_all(t):

total = 0

for x in t:

total += x

return total

total is initialized to 0. Each time through the loop, x gets one element from
the list. The += operator provides a short way to update a variable:

total += x

is equivalent to:

total = total + x

As the loop executes, total accumulates the sum of the elements; a variable
used this way is sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python
provides it as a built-in function, sum:

>>> t = [1, 2, 3]

>>> sum(t)

6

An operation like this that combines a sequence of elements into a single value
is sometimes called reduce.

Sometimes you want to traverse one list while building another. For example,
the following function takes a list of strings and returns a new list that contains
capitalized strings:

def capitalize_all(t):

res = []

for s in t:

res.append(s.capitalize())

return res

10.8. Deleting elements 103

res is initialized with an empty list; each time through the loop, we append the
next element. So res is another kind of accumulator.

An operation like capitalize all is sometimes called a map because it “maps”
a function (in this case the method capitalize) onto each of the elements in a
sequence.

Another common operation is to select some of the elements from a list and
return a sublist. For example, the following function takes a list of strings and
returns a list that contains only the uppercase strings:

def only_upper(t):

res = []

for s in t:

if s.isupper():

res.append(s)

return res

isupper is a string method that returns True if the string contains only upper
case letters.

An operation like only upper is called a filter because it selects some of the
elements and filters out the others.

Most common list operations can be expressed as a combination of map, filter
and reduce. Because these operations are so common, Python provides language
features to support them, including the built-in function reduce and an operator
called a “list comprehension.” But these features are idiomatic to Python, so I
won’t go into the details.
Exercise 10.1. Write a function that takes a list of numbers and returns the
cumulative sum; that is, a new list where the ith element is the sum of the first
i + 1 elements from the original list. For example, the cumulative sum of [1,
2, 3] is [1, 3, 6].

10.8 Deleting elements

There are several ways to delete elements from a list. If you know the index of
the element you want, you can use pop:

>>> t = [’a’, ’b’, ’c’]

>>> x = t.pop(1)

>>> print t

[’a’, ’c’]

>>> print x

b

104 Chapter 10. Lists

pop modifies the list and returns the element that was removed.

If you don’t need the removed value, you can use the del operator:

>>> t = [’a’, ’b’, ’c’]

>>> del t[1]

>>> print t

[’a’, ’c’]

If you know the element you want to remove (but not the index), you can use
remove:

>>> t = [’a’, ’b’, ’c’]

>>> t.remove(’b’)

>>> print t

[’a’, ’c’]

The return value from remove is None.

To remove more than one element, you can use del with a slice index:

>>> t = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

>>> del t[1:5]

>>> print t

[’a’, ’f’]

As usual, the slice selects all the elements up to, but not including, the second
index.

10.9 Objects and values

If we execute these assignment statements:

a = ’banana’

b = ’banana’

We know that a and b both refer to a string, but we don’t know whether they
refer to the same string. There are two possible states:

a

b

"banana"

"banana"

a

b
"banana"

In one case, a and b refer to two different objects that have the same value. In
the second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is

operator.

10.10. Aliasing 105

>>> a = ’banana’

>>> b = ’banana’

>>> a is b

True

In this example, Python only created one string object, and both a and b refer
to it.

In contrast, when you create two lists, you get two objects:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

So the state diagram looks like this:

a

b

[1, 2, 3]

[1, 2, 3]

In this case we would say that the two lists are equivalent, because they have
the same elements, but not identical, because they are not the same object.
If two objects are identical, they are also equivalent, but if they are equivalent,
they are not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is
more precise to say that an object has a value. If you execute a = [1,2,3],
a refers to a list object whose value is a particular sequence of elements. If
another list has the same elements, we would say it has the same value.

10.10 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the
same object. For example, if you execute:

>>> a = [1, 2, 3]

>>> b = a

Then a and b refer to the same list. The state diagram looks like this:

a

b
[1, 2, 3]

The association of a variable with an object is called a reference. In this
example, there are two references to the same object.

106 Chapter 10. Lists

An object with more than one reference has, in some sense, more than one name,
so we say that the object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17

>>> print a

[17, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable.
In general, it is safer to avoid aliasing when you are working with mutable
objects.

For immutable objects like strings, aliasing is not as much of a problem. In this
example:

a = ’banana’

b = ’banana’

It almost never makes a difference whether a and b refer to the same string or
not.

10.11 List arguments

When you pass a list to a function, the function gets a reference to the list. If
the function modifies a list parameter, the caller sees the change. For example,
delete head removes the first element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = [’a’, ’b’, ’c’]

>>> delete_head(letters)

>>> print letters

[’b’, ’c’]

The parameter t and the variable letters are aliases for the same object. The
stack diagram looks like this:

0

1

2

’a’

’b’

’c’

list

t

__main__ letters

delete_head

10.12. Copying lists 107

Since the list is shared by two frames, I drew it between them.

If a function returns a list, it returns a reference to the list. For example, tail
returns a list that contains all but the first element of the given list:

def tail(t):

return t[1:]

Here’s how tail is used:

>>> letters = [’a’, ’b’, ’c’]

>>> rest = tail(letters)

>>> print rest

[’b’, ’c’]

Because the return value was created with the slice operator, it is a new list.
The original list is unmodified.

10.12 Copying lists

When you assign an object to a variable, Python copies the reference to the
object.

>>> a = [1, 2, 3]

>>> b = a

In this case a and b refer to the same list.

If you want to copy the list (not just a reference to it), you can use the slice
operator:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> print b

[1, 2, 3]

Making a slice of a creates a new list. In this case the slice contains all of the
elements from the original list.

Another way to make a copy is the copy function from the copy module:

>>> import copy

>>> a = [1, 2, 3]

>>> b = copy.copy(a)

>>> print b

But it is more idiomatic to use the slice operator.

108 Chapter 10. Lists

10.13 Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list
of characters is not the same as a string. To convert from a string to a list of
characters, you can use the list function:

>>> s = ’spam’

>>> t = list(s)

>>> print t

[’s’, ’p’, ’a’, ’m’]

list breaks a string into individual letters. If you want to break a string into
words, you can use the split method:

>>> s = ’pining for the fjords’

>>> t = s.split()

>>> print t

[’pining’, ’for’, ’the’, ’fjords’]

An optional argument called a delimiter specifies which characters to use as
word boundaries. The following example uses ’, ’ (a comma followed by a
space) as the delimiter:

>>> s = ’spam, spam, spam’

>>> delimiter = ’, ’

>>> s.split(delimiter)

[’spam’, ’spam’, ’spam’]

join is the inverse of split. It takes a list of strings and concatenates the
elements. join is a string method, so you have to invoke it on the delimiter and
pass the list as a parameter:

>>> t = [’pining’, ’for’, ’the’, ’fjords’]

>>> delimiter = ’ ’

>>> delimiter.join(t)

’pining for the fjords’

In this case the delimiter is a space character, so join puts a space between
words. To concatenate strings without spaces, you can use the empty string, ’’
as a delimiter.

10.14 Debugging

When you are debugging a program, and especially if you are working on a hard
bug, there are four things to try:

reading: Examine your code, read it back to yourself, and check that it means
what you meant to say.

10.14. Debugging 109

running: Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the problem
becomes obvious, but sometimes you have to spend some time to build
scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, run-
time, logical? What information can you get from the error messages,
or from the output of the program? What kind of error could cause the
problem you’re seeing? What did you change last, before the problem
appeared?

retreating: At some point, the best thing to do is back off, undoing recent
changes, until you get back to a program that works, and that you under-
stand. Then you can starting rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget
the others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical
error, but not if the problem is a conceptual misunderstanding. If you don’t
understand what your program does, you can read it 100 times and never see
the error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if
you run experiments without thinking or reading your code, you might fall into
a pattern I call “random walk programming,” which is the process of making
random changes until the program does the right thing. Needless to say, random
walk programming can take a long time.

The way out is to take more time to think. Debugging is like an experimental
science. You should have at least one hypothesis about what the problem is. If
there are two or more possibilities, try to think of a test that would eliminate
one of them.

Taking a break sometimes helps with the thinking. So does talking. If you
explain the problem to someone else (or even yourself), you will sometimes find
the answer before you finish asking the question.

But even the best debugging techniques will fail if there are too many errors,
or if the code you are trying to fix is too big and complicated. Sometimes the
best option is to retreat, simplifying the program until you get to something
that you understand, and that works.

Beginning programmers are often reluctant to retreat, because they can’t stand
to delete a line of code (even if it’s wrong). If it makes you feel better, copy
your program into another file before you start stripping it down. Then you can
paste the pieces back in a little bit at a time.

To summarize, here’s the XXX Theorem of debugging:

110 Chapter 10. Lists

Finding a hard bug requires reading, running, ruminating, and some-
times retreating. If you get stuck on one of these activities, try the
others.

10.15 Glossary

list: A sequence of values.

element: One of the values in a list (or other sequence), also called items.

index: An integer value that indicates an element in a list.

nested list: A list that is an element of another list.

list traversal: The sequential accessing of each element in a list.

mapping: A relationship in which each element of one set corresponds to an
element of another set. For example, a list is a mapping from indices to
elements.

accumulator: A variable used in a loop to add up or accumulate a result.

reduce: A processing pattern that traverses a sequence and accumulates the
elements into a single result.

map: A processing pattern that traverses a sequence and performs an operation
on each element.

filter: A processing pattern that traverses a list and selects the elements that
satisfy some criterion.

object: Something a variable can refer to. An object has a type and a value.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.

10.16. Exercises 111

10.16 Exercises

Exercise 10.2. The list method reverse modifies a list by reversing the order
of the elements, and returns None. Use the list function and reverse to write
a one-line version of is palindrome from Exercise 9.7.
Exercise 10.3.

Exercise 10.4.

Exercise 10.5.

Exercise 10.6.

112 Chapter 10. Lists

Chapter 11

Dictionaries

A dictionary is like a list, but more general. In a list, the indices have to be
integers; in a dictionary they can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices and a
set of values. Each index, which is called a key, corresponds to a value. The
association of a key and a value is called a key-value pair or sometimes an
item.

As an example, we will build a dictionary that maps from English words to
Spanish words, so the keys and the values are all strings.

The function dict creates a new dictionary with no items.

>>> eng2sp = dict()

>>> print eng2sp

{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the
dictionary, you can use square brackets:

>>> eng2sp[’one’] = ’uno’

This line creates an item that maps from the key ’one’ to the value ’uno’. If
we print the dictionary again, we see a key-value pair with a colon between the
key and value:

>>> print eng2sp

{’one’: ’uno’}

This output format is also an input format. For example, you can create a new
dictionary with three items:

114 Chapter 11. Dictionaries

>>> eng2sp = {’one’: ’uno’, ’two’: ’dos’, ’three’: ’tres’}

But if you print eng2sp, you might be surprised:

>>> print eng2sp

{’one’: ’uno’, ’three’: ’tres’, ’two’: ’dos’}

The key-value pairs are not in order, but that’s not a problem because the
elements of a dictionary are never indexed with integer indices. Instead, you
use the keys to look up the corresponding values:

>>> print eng2sp[’two’]

’dos’

The key ’two’ always maps to the value ’dos’ so the order of the items doesn’t
matter.

If the key isn’t in the dictionary, you get an exception:

>>> print eng2sp[’four’]

KeyError: ’four’

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries; it tells you whether something appears
as a key in the dictionary (appearing as a value is not good enough).

>>> ’one’ in eng2sp

True

>>> ’uno’ in eng2sp

False

To see whether something appears as a value in a dictionary, you can use the
method values, which returns the values as a list, and then use the in operator:

>>> vals = eng2sp.values()

>>> ’uno’ in vals

True

The in operator uses different algorithms for lists and dictionaries. For lists, it
uses a search algorithm, as in Section 8.6. As the list gets longer, the search
time gets longer in direct proportion. For dictionaries, Python uses an algorithm
called a hashtable that has a remarkable property: the in operator takes about
the same amount of time no matter how many items there are in a dictionary.
I won’t explain how that’s possible, but you can look it up.

11.1. Dictionary as a set of counters 115

11.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each
letter appears. There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then
you could traverse the string and, for each character, increment the cor-
responding counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in function ord), use the number
as an index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add
an item to the dictionary. After that you would increment the value of an
existing item.

Each of these options performs the same computation, but each of them imple-
ments that computation in a different way.

An implementation is a way of performing a computation; some implemen-
tations are better than others. For example, an advantage of the dictionary
implementation is that we don’t have to know ahead of time which letters ap-
pear in the string and we only have to make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):

d = {}

for c in s:

if c not in d:

d[c] = 1

else:

d[c] += 1

return d

The name of the function is histogram, which is a statistical term for a set of
counters (or frequencies).

The first line of the function creates an empty dictionary. The for loop traverses
the string. Each time through the loop, if the character c is not in the dictionary,
we create a new item with key c and the initial value 1 (since we have seen this
letter once). If c is already in the dictionary we increment d[c].

Here’s how it works:

>>> h = histogram(’brontosaurus’)

>>> print h

{’a’: 1, ’b’: 1, ’o’: 2, ’n’: 1, ’s’: 2, ’r’: 2, ’u’: 2, ’t’: 1}

116 Chapter 11. Dictionaries

The histogram indicates that the letters ’a’ and ’b’ appear once each; ’o’

appears twice, and so on.
Exercise 11.1. Dictionaries have a method called get that takes a key and a
default value. If the key appears in the dictionary, get returns the corresponding
value; otherwise it returns the default value. For example:

>>> h = histogram(’a’)

>>> print h

{’a’: 1}

>>> h.get(’a’, 0)

1

>>> h.get(’b’, 0)

0

Use get to write histogram more concisely. You should be able to eliminate
the if statement.

11.2 Looping and dictionaries

If you use a dictionary in a for statement, it traverses the keys of the dictionary.
For example, print hist prints each key and the corresponding value:

def print_hist(h):

for c in h:

print c, h[c]

Here’s what the output looks like:

>>> h = histogram(’parrot’)

>>> print_hist(h)

a 1

p 1

r 2

t 1

o 1

Again, the keys are in no particular order.
Exercise 11.2. Dictionaries have a method called keys that returns the keys
of the dictionary, in no particular order, as a list.

Modify print hist to print the keys and their values in alphabetical order, using
keys and sort.

11.3 Reverse lookup

Given a dictionary d and a key k, it is easy to find the corresponding value v =

d[k]. This operation is called a lookup.

11.3. Reverse lookup 117

But what if you have v and you want to find k? You have two problems: first,
there might be more than one key that maps to the value v. Depending on the
application, you might be able to pick one, or you might have to make a list
that contains all of them. Second, there is no simple syntax to do a reverse

lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that
value:

def reverse_lookup(d, v):

for k in d:

if d[k] == v:

return k

raise ValueError

This function is yet another example of the search pattern we have seen before,
but it uses a feature we haven’t seen before, raise. The raise statement causes
an exception; in this case it causes a ValueError, which generally indicates that
there is something wrong with the value of a parameter.

If we get to the end of the loop, that means v doesn’t appear in the dictionary
as a value, so we raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram(’parrot’)

>>> k = reverse_lookup(h, 2)

>>> print k

r

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 5, in reverse_lookup

ValueError

The result when you raise an exception is the same as when Python raises one:
it prints a traceback and an error message.

The raise statement takes a detailed error message as an optional argument.
For example:

>>> raise ValueError, ’value does not appear in the dictionary’

Traceback (most recent call last):

File "<stdin>", line 1, in ?

ValueError: value does not appear in the dictionary

118 Chapter 11. Dictionaries

A reverse lookup is much slower than a forward lookup; if you have to do it
often, or if the dictionary gets big, the performance of your program will suffer.
Exercise 11.3. Modify reverse lookup so that it builds and returns a list of
all keys that map to v, or an empty list if there are none.

11.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you were given a
dictionary that maps from letters to frequencies, you might want to invert it;
that is, create a dictionary that maps from frequencies to letters. Since there
might be several letters with the same frequency, each value in the inverted
dictionary should be a list of letters.

Here is a function that inverts a dictionary:

def invert_dict(d):

inv = {}

for key in d:

val = d[key]

if val not in inv:

inv[val] = [key]

else:

inv[val].append(key)

return inv

Each time through the loop, key gets a key from d and val gets the corre-
sponding value. If val is not in inv, that means we haven’t seen it before, so
we create a new item and initialize it with a singleton (a list that contains a
single element). Otherwise we have seen this value before, so we append the
corresponding key to the list.

Here is an example:

>>> hist = histogram(’parrot’)

>>> print hist

{’a’: 1, ’p’: 1, ’r’: 2, ’t’: 1, ’o’: 1}

>>> inv = invert_dict(hist)

>>> print inv

{1: [’a’, ’p’, ’t’, ’o’], 2: [’r’]}

And here is a diagram showing hist and inv:

11.4. Dictionaries and lists 119

’a’ 1

1

dict

hist

’p’

1

’o’ 1

’r’ 2

’t’

0

1

’a’

’p’

list

2 ’t’

’o’3

1

dict

inv

2 0

list

’r’

A dictionary is represented as a box with the type dict above it and the key-
value pairs inside. If the values are integers, floats or strings, I usually draw
them inside the box, but I usually draw lists outside the box, just to keep the
diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be
keys. Here’s what happens if you try:

>>> t = [1, 2, 3]

>>> d = {}

>>> d[t] = ’oops’

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that
means that the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer.
Dictionaries uses these integers, called hash values, to store and look up key-
value pairs.

This system works fine if the keys are immutable. But if the keys are mutable,
like lists, bad things happen. For example, when you create a key-value pair,
Python hashes the key and stores it in the corresponding location. If you modify
the key and then hash it again, it would go to a different location. In that case
you might have two entries for the same key, or you might not be able to find a
key. Either way, the dictionary wouldn’t work correctly.

That’s why the keys have to be hashable, and why mutable types like lists aren’t.
The simplest way to get around this limitation is to use tuples, which we will
see in the next chapter.

Since dictionaries are mutable, they can’t be used as keys, but they can be used
as values.

120 Chapter 11. Dictionaries

11.5 Hints

If you played with the fibonacci function from Section 6.7, you might have
noticed that the bigger the argument you provide, the longer the function takes
to run. Furthermore, the run time increases very quickly.

To understand why, consider this call graph for fibonacci with n=4:

fibonacci

n 4

fibonacci

n 3

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci

n 1

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

A call graph shows a set function frames, with lines connecting each frame to
the frames of the functions it calls. At the top of the graph, fibonacci with
n=4 calls fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls
fibonacci with n=2 and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is
an inefficient solution to the problem, and it gets worse as the argument gets
bigger.

One solution is to keep track of values that have already been computed by
storing them in a dictionary. A previously computed value that is stored for
later use is called a hint. Here is an implementation of fibonacci using hints:

previous = {0:0, 1:1}

def fibonacci(n):

if n in previous:

return previous[n]

res = fibonacci(n-1) + fibonacci(n-2)

previous[n] = res

return res

previous keeps track of the Fibonacci numbers we already know. We start with
only two items: 0 maps to 0 and 1 maps to 1.

Whenever fibonacci is called, it checks previous. If the result is already there,

11.6. Long integers 121

it can return immediately. Otherwise it has to compute the new value, add it
to the dictionary, and return it.

previous is created outside the function, so it belongs to the special frame
called main . Variables in main are sometimes called global because they
can be accessed from any function. Unlike local variables, which disappear when
their function ends, global variables persist from one function call to the next.

Using this version of fibonacci, you can compute fibonacci(40) in an eye-
blink. But if you compute fibonacci(50), you get:

>>> fibonacci(50)

20365011074L

The L at the end of the result indicates that the result is too big to fit into a
Python integer. Python converted it to a long integer.

11.6 Long integers

Python provides a type called long that can handle any size integer. There are
two ways to create a long value. One is to write an integer with a capital L at
the end:

>>> type(1L)

<type ’long’>

The other is to use the long function to convert a value. long can accept any
numerical type and even strings of digits:

>>> long(1)

1L

>>> long(3.1415)

3L

>>> long(’42’)

42L

The mathematical operators work on long integers, and the function in the math
module, too, so in general any code that works with int will also work with
long.

Any time the result of a computation is too big to be represented with an integer,
Python converts the result as a long integer:

>>> 1000 * 1000

1000000

>>> 100000 * 100000

10000000000L

In the first case the result has type int; in the second case it is long.

122 Chapter 11. Dictionaries

11.7 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing
and checking data by hand. Here are some suggestions for debugging large
datasets:

Scale down the input: If possible, reduce the size of the dataset. For ex-
ample if the program reads a text file, start with just the first 10 lines,
or with the smallest example you can find. You can either edit the files
themselves, or (better) modify the program so it reads only the first n

lines.

If there is an error, you can reduce n to the smallest value that manifests
the error, and then increase it gradually as you find and correct errors.

Check summaries and types: Instead of printing and checking the entire
dataset, consider printing summaries of the data: for example, the number
of items in a dictionary or the total of a list of numbers.

A common cause of run-time errors is a value that is not the right type.
For debugging this kind of error, it is often enough to print the type of a
value, which is often smaller than the value itself.

Write self-checks: Sometimes you can write code to check for errors automat-
ically. For example, if you are computing the average of a list of number,
you could check that the result is not greater than the largest element in
the list or less than the smallest. This is called a “sanity check” because
it detects results that are “insane.”

Another kind of check compares the results of two different computations
to see if they are consistent. This is called a “consistency check.”

11.8 Glossary

dictionary: A mapping from a set of keys to their corresponding values.

key-value pair: The representation of the mapping from a key to a value.

item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value
pair. This is more specific than our previous use of the word “value.”

implementation: A way of performing a computation.

hashtable: The algorithm used to implement Python dictionaries.

11.9. Exercises 123

hash function: A function used by a hashtable to compute the location for a
key.

hashable: A type that has a hash function. Immutable types like integers,
floats and strings are hashable; mutable types like lists and dictionaries
are not.

lookup: A dictionary operation that takes a key and finds the corresponding
value.

reverse lookup: A dictionary operation that takes a value and finds one or
more keys that map to it.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the execution of
a program, with an arrow from each caller to each callee.

histogram: A set of counters.

hint: A computed value stored to avoid unnecessary future computation.

global variable: A variable defined outside a function. Global variables can
be accessed from any function.

11.9 Exercises

Exercise 11.4. Two words are anagrams if you can rearrange the letters from
one to spell the other. Write a function called is anagram that takes two strings
and returns True if they are anagrams.

124 Chapter 11. Dictionaries

Chapter 12

Tuples

12.1 Tuples are immutable

A tuple is a sequence of values. The values can be any type, and they are
indexed by integers, so in that respect tuples are a lot like lists. The important
difference is that tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>> tuple = ’a’, ’b’, ’c’, ’d’, ’e’

Although it is not necessary, it is common to enclose tuples in parentheses:

>>> t = (’a’, ’b’, ’c’, ’d’, ’e’)

To create a tuple with a single element, you have to include the final comma:

>>> t1 = (’a’,)

>>> type(t1)

<type ’tuple’>

Without the comma, Python treats (’a’) as a string in parentheses:

>>> t2 = (’a’)

>>> type(t2)

<type ’str’>

Another way to create a tuple is the function tuple. With no argument, it
creates an empty tuple:

>>> t = tuple()

>>> print t

()

126 Chapter 12. Tuples

If the argument is a sequence (string, list or tuple), the result is a tuple with
the elements of the sequence:

>>> t = tuple(’lupins’)

>>> print t

(’l’, ’u’, ’p’, ’i’, ’n’, ’s’)

Most list operators also work on tuples. The bracket operator indexes an ele-
ment:

>>> t = (’a’, ’b’, ’c’, ’d’, ’e’)

>>> print t[0]

’a’

And the slice operator selects a range of elements.

>>> print t[1:3]

(’b’, ’c’)

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = ’A’

TypeError: object doesn’t support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with
another:

>>> t = (’A’,) + t[1:]

>>> print t

(’A’, ’b’, ’c’, ’d’, ’e’)

12.2 Tuple assignment

It is often useful to swap the values of two variables. With conventional as-
signments, you have to use a temporary variable. For example, to swap a and
b:

>>> temp = a

>>> a = b

>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:

>>> a, b = b, a

The left side is a tuple of variables; the right side is a tuple of expressions. Each
value is assigned to its respective variable. All the expressions on the right side
are evaluated before any of the assignments.

12.3. Tuples as return values 127

The number of variables on the left and the number of values on the right have
to be the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple).
For example, to split an email address into a user name and a domain, you could
write:

>>> addr = ’monty@python.org’

>>> uname, domain = addr.split(’@’)

The return value from split is a list with two elements; the first element is
assigned to uname, the second to domain.

>>> print uname

monty

>>> print domain

python.org

12.3 Tuples as return values

Strictly speaking, a function can only return one value, but if the value is a tuple,
the effect is the same as returning multiple values. For example, if you want
to divide two integers and compute the quotient and remainder, it is inefficient
to compute x/y and then x%y. It is better to compute them both at the same
time.

The built-in function divmod takes two arguments and returns a tuple of two
values, the quotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> print t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> print quot

2

>>> print rem

1

Here is an example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

128 Chapter 12. Tuples

max and min are built-in functions that find the largest and smallest elements
of a sequence. max min computes both and returns a tuple of two values.

12.4 Lists and tuples

zip is a built-in function that takes two or more sequences and “zips” them into
a list of tuples, where each tuple contains one element from each sequence.

This example zips a string and a list:

>>> s = ’abc’

>>> t = [0, 1, 2]

>>> zip(s, t)

[(’a’, 0), (’b’, 1), (’c’, 2)]

The result is a list of tuples where each tuple contains a character from the
string and the corresponding element from the list.

If the sequences are not the same length, the result gets the length of the shorter
one.

>>> zip(’Anne’, ’Elk’)

[(’A’, ’E’), (’n’, ’l’), (’n’, ’k’)]

You can use tuple assignment to traverse a list of tuples:

t = [(’a’, 0), (’b’, 1), (’c’, 2)]

for letter, number in t:

print number, letter

Each time through the loop, Python selects the next tuple in the list and assigns
the elements to letter and number. The output of this loop is:

0 a

1 b

2 c

If you combine zip, for and tuple assignment, you get a standard idiom for
traversing two (or more) sequences at the same time. For example, has match

takes two sequences, t1 and t2, and returns True if there is an index i such
that t1[i] == t2[i]:

def has_match(t1, t2):

for x, y in zip(t1, t2):

if x == y:

return True

return False

12.5. Dictionaries and tuples 129

If you need to traverse the elements of a sequence and their indices, you can use
the built-in function enumerate:

for index, element in enumerate(’abc’):

print index, element

The output of this loop is:

0 a

1 b

2 c

Again.

12.5 Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each
tuple is a key-value pair.

>>> d = {’a’:0, ’b’:1, ’c’:2}

>>> t = d.items()

>>> print t

[(’a’, 0), (’c’, 2), (’b’, 1)]

As you should expect from a dictionary, the items are in no particular order.

Conversely, you can use a list of tuples to initialize a new dictionary:

>>> t = [(’a’, 0), (’c’, 2), (’b’, 1)]

>>> d = dict(t)

>>> print d

{’a’: 0, ’c’: 2, ’b’: 1}

Combining this feature with zip yields a concise way to create a dictionary:

>>> d = dict(zip(’abc’, range(3)))

>>> print d

{’a’: 0, ’c’: 2, ’b’: 1}

The dictionary method update also takes a list of tuples and adds them, as
key-value pairs, to an existing dictionary.

Combining items, tuple assignment and for, you get the idiom for traversing
the keys and values of a dictionary:

for key, value in d.items():

print value, key

The output of this loop is:

130 Chapter 12. Tuples

0 a

2 c

1 b

Again.

It is common to use tuples as keys in dictionaries (primarily because you can’t
use lists). For example, a telephone directory might map from last-name, first-
name pairs to telephone numbers. Assuming that we have defined last, first
and number, we could write:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse
this dictionary.

for last, first in directory:

print first, last, directory[last,first]

This loop traverses the keys in directory, which are tuples. It assigns the ele-
ments of each tuple to last and first, then prints the name and corresponding
telephone number.

There are two ways to represent tuples in a state diagram. The more detailed
version shows the indices and elements just as they appear in a list. For example,
the tuple (’Cleese’, ’John’) would appear:

0

1

’Cleese’

’John’

tuple

But in a larger diagram you might want to leave out the details. For example,
a diagram of the telephone directory might appear:

(’Cleese’, ’John’) ’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

(’Chapman’, ’Graham’)

(’Idle’, ’Eric’)

(’Jones’, ’Terry’)

(’Gilliam’, ’Terry’)

(’Palin’, ’Michael’) ’08700 100 222’

dict

Here the tuples are shown using Python syntax as a graphical shorthand.

The telephone number in the diagram is the complaints line for the BBC, so
please don’t call it.

12.6. Sorting tuples 131

12.6 Sorting tuples

The comparison operators work with tuples and other sequences; Python starts
by comparing the first element from each sequence. If they are equal, it goes on
to the next elements, and so on, until it finds elements that differ. Subsequent
elements are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

The sort function works the same way. It sorts primarily by first element, but
in the case of a tie, it sorts by second element, and so on. Here is an example
that sorts and prints the key-value pairs of a dictionary:

>>> d = {’a’: 0, ’c’: 2, ’b’: 1}

>>> t = d.items()

>>> t.sort()

>>> print t

[(’a’, 0), (’b’, 1), (’c’, 2)]

To sort by value (rather than key), you can build a list of value-key pairs. One
way to do that is to traverse the dictionary items and append tuples onto a list:

def value_key_pairs(d):

res = []

for key, value in d.items():

res.append((value, key))

return res

The argument for append has two sets of parentheses: one because its an argu-
ment and the other because it is a tuple.
Exercise 12.1. Draw a diagram that shows the final state of value key pairs

with d = {’a’: 0, ’c’: 2, ’b’: 1}.

12.7 Sequences of sequences

I have focused on lists of tuples, but almost all of the examples in this chapter
also work with lists of lists, tuples of tuples, and tuples of lists. To avoid
enumerating the possible combinations, it is sometimes easier to talk about
sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can
be used interchangeably. So how and why do you choose one over the others.

To start with the obvious, strings are more limited than other sequences because
the elements have to be characters. They are also immutable. If you need the

132 Chapter 12. Tuples

ability to change the characters in a string (as opposed to creating a new string),
you might want to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But
there are a few cases where you might prefer tuples:

• In some contexts, like a return statement, it is syntactically simpler to
create a tuple than a list.

• If you want to use a sequence as a dictionary key, you have to use an
immutable type like a tuple or string.

• If you are passing a sequence as an argument to a function, using tuples
reduces the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and
reverse, which modify existing lists. But Python provides the built-in func-
tions sorted and reversed, which take any sequence as a parameter and return
a new list with the same elements in a different order.

12.8 Debugging

Using immutable types to eliminate aliasing.

The best way to avoid a bug is to make it impossible.

12.9 Glossary

tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a
tuple of variables on the left. The right side is evaluated and then its
elements are assigned to the variables on the left.

12.10 Exercises

Exercise 12.2. Write a function called most frequent that takes a string and
prints the 3 most common letters in the string.
Exercise 12.3. Write a program that reads a word list from a file (see Sec-
tion 9.1) and prints all the sets of words that are anagrams.

Here is an example of what the output might look like:

12.10. Exercises 133

[’deltas’, ’desalt’, ’lasted’, ’salted’, ’slated’, ’staled’]

[’retainers’, ’ternaries’]

[’generating’, ’greatening’]

[’resmelts’, ’smelters’, ’termless’]

Hint: you might want to build a dictionary that maps from a set of letters to a
list of words that can be spelled with those letters. The question is, how can you
represent the set of letters in a way that can be used as a key?
Exercise 12.4. Modify the previous program so that it prints the largest set of
anagrams first, followed by the second largest set, and so on.

134 Chapter 12. Tuples

Chapter 13

Case study: data structure

selection

13.1 DSU

DSU stands for “decorate, sort, undecorate” and refers to a pattern that is
often useful for sorting lists according to some attribute of the elements.

For example, if you have a dictionary that maps from mothers to lists of their
children, you might want to sort the mothers by their number of children. Here
is a function that does that:

def sort_by_children(mothers):

t = []

for mother, children in mothers.items():

t.append((len(children), mother))

t.sort()

res = []

for number, mother in t:

res.append(mother)

return res

The first loop assigns each mother to mother and each list of children to
children. It builds a list of tuples, where each tuple is the number of chil-
dren and a mother.

sort compares the first element, number of children, first, and only considers
the second element to break ties. The result is a list of tuples sorted in increasing
order by number of children.

136 Chapter 13. Case study: data structure selection

The second loop traverses the list of tuples and builds a list of mothers, sorted
by parity (which in this context means number of children).

This pattern is called “decorate, sort, undecorate” because the first loop “deco-
rates” the list of mothers with by pairing each mother with her parity, and the
last loop “undecorates” the sorted list by removing the parity information.

13.2 Word frequency analysis

As usual, you should at least attempt the following exercises before you read
my solutions.
Exercise 13.1. Write a program that reads a file, breaks each line into words,
strips whitespace and punctuation from the words, and converts them to lower-
case.
Exercise 13.2. Go to Project Gutenberg (gutenberg. net) and download your
favorite out-of-copyright book in plain text format.

Modify your program from the previous exercise to read the book you downloaded,
skip over the header information at the beginning of the file, and process the rest
of the words as before.

Then modify the program to count the total number of words in the book, and
the number of times each word is used.

Print the number of different words used in the book. Compare different books
by different authors, written in different eras. Which author uses the most
extensive vocabulary?
Exercise 13.3. Modify the program from the previous exercise to print the 20
most frequently-used words in the book.
Exercise 13.4. Modify the previous program to read a word list (see Section 9.1)
and then print all the words in the book that are not in the word list. How many
of them are typos? How many of them are common words that should be in the
word list, and how many of them are really obscure?

13.3 Random numbers

Most computer programs do the same thing every time they execute, given the
same inputs, so they are said to be deterministic. Determinism is usually a
good thing, since we expect the same calculation to yield the same result. For
some applications, though, we want the computer to be unpredictable. Games
are an obvious example, but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there
are ways to make it at least seem nondeterministic. One of them is to use al-
gorithms that generate pseudorandom numbers. Pseudorandom numbers are

13.3. Random numbers 137

not truly random because they are generated by a deterministic computation,
but just by looking at the numbers it is all but impossible to distinguish them
from random.

The random module provides functions that generate pseudorandom numbers
(which I will simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0
but not 1.0). Each time you call random, you get the next number in a long
series. To see a sample, run this loop:

import random

for i in range(10):

x = random.random()

print x

The function randint takes parameters low and high and returns an integer
between low and high (including both).

>>> random.randint(5, 10)

5

>>> random.randint(5, 10)

9

To choose an element from a sequence at random, you can use choice:

>>> t = [1, 2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3

The random module also provides functions to generate random values from
continuous distributions including Gaussian, exponential, gamma, and a few
more.
Exercise 13.5. Write a function named choose from hist that takes a his-
togram as defined in Section 11.1 and returns a random value from the his-
togram, chosen with probability in proportion to frequency. For example, for
this histogram:

>>> t = [’a’, ’a’, ’b’]

>>> h = histogram(t)

>>> print h

{’a’: 2, ’b’: 1}

your function should ’a’ with probability 2/3 and ’b’ with probability 1/3.

138 Chapter 13. Case study: data structure selection

13.4 Word histogram

Here is a program that reads a file and builds a histogram of the words in the
file:

import string

def process_file(filename):

h = {}

fp = open(filename)

for line in fp:

process_line(line, h)

return h

def process_line(line, h):

line = line.replace(’-’, ’ ’)

for word in line.split():

word = word.strip(string.punctuation + string.whitespace)

word = word.lower()

h[word] = h.get(word, 0) + 1

hist = process_file(’emma.txt’)

This program reads emma.txt, which contains the text of Emma by Jane Austin.

process file loops through the lines of the file, passing them one at a time to
process line. The histogram h is being used as an accumulator.

process line uses the string method replace to replace hyphens with spaces
before using split to break the line into a list of strings. It traverses the list of
words and uses strip and lower to remove punctuation and convert to lower
case. (It is a shorthand to say that strings are “converted;” remember that
string are immutable, so methods like strip and lower return new strings.)

Finally, process line updates the histogram by creating a new item or incre-
menting an existing one.

To count the total number of words in the file, we can add up the frequencies
in the histogram:

def total_words(h):

return sum(h.values())

The number of different words is just the number of items in the dictionary:

def different_words(h):

return len(h)

13.5. Most common words 139

Here is some code to print the results:

print ’Total number of words:’, total_words(hist)

print ’Number of different words:’, different_words(hist)

And the results:

Total number of words: 161073

Number of different words: 7212

13.5 Most common words

To find the most common words, we can apply the DSU pattern; most common

takes a histogram and returns a list of word-frequency tuples, sorted in reverse
order by frequency:

def most_common(h):

t = []

for key, value in h.items():

t.append((value, key))

t.sort()

t.reverse()

return t

Here is a loop that prints the ten most common words:

t = most_common(hist)

print ’The most common words are:’

for freq, word in t[0:10]:

print word, ’\t’, freq

And here are the results from Emma:

The most common words are:

to 5242

the 5204

and 4897

of 4293

i 3191

a 3130

it 2529

her 2483

was 2400

she 2364

140 Chapter 13. Case study: data structure selection

13.6 Optional arguments

We have seen built-in functions that take a variable number of arguments. For
example, range can take one, two, or three arguments.

It is possible to write user-defined functions with optional arguments, too. For
example, here is a function that prints the most common words in a histogram

def print_most_common(hist, num=10)

t = most_common(hist)

print ’The most common words are:’

for freq, word in t[0:num]:

print word, ’\t’, freq

The first parameter is required; the second is optional. The default value of
num is 10.

If you only provide one argument:

print_most_common(hist)

num gets the default value. If you provide two arguments:

print_most_common(hist, 20)

num gets the value of the argument instead. In other words, the optional argu-
ment overrides the default value.

If a function has both required and optional parameters, all the required pa-
rameters have to come first, followed by the optional ones.

13.7 Dictionary subtraction

Finding the words from the book that are not in the word list from words.txt

is a problem you might recognize as set subtraction; that is, we want to find all
the words from one set (the words in the book) that are not in another set (the
words in the list).

subtract takes dictionaries d1 and d2 and returns a new dictionary that con-
tains all the keys from d1 that are not in d2. Since we don’t really care about
the values, we set them all to None.

def subtract(d1, d2):

res = {}

for key in d1:

if key not in d2:

res[key] = None

return res

13.8. Random words 141

To find the words in the book that are not in words.txt, we can use
process file to build a histogram for words.txt, and then subtract:

words = process_file(’words.txt’)

diff = subtract(hist, words)

print "The words in the book that aren’t in the word list are:"

for word in diff.keys():

print word,

Here are some of the results from Emma:

The words in the book that aren’t in the word list are:

rencontre jane’s blanche woodhouses disingenuousness

friend’s venice apartment ...

Some of these words are names and possessives. Others, like “rencontre,” are
no longer in common use. But a few are common words that should really be
on the list!

13.8 Random words

To choose a random word from the histogram, the simplest algorithm it to build
a list with multiple copies of each word, according to the observed frequency,
and then choose from the list:

def random_word(h):

t = []

for word, freq in h.items():

t.extend([word] * freq)

return random.choice(t)

The expression [word] * freq creates a list with freq copies of the string word

(actually, to be more precise, the elements are references to the same string).
The extend method is similar to append except that the argument is a sequence.

This algorithm works, but it is wildly inefficient; each time you choose a random
word, it rebuilds the list, which is as big as the original book.

If you generate a series of words from the book, you can get a sense of the
vocabulary, but it probably won’t make much sense:

this the small regard harriet which knightley’s it most things

The next section is about generating random text that makes more sense.

142 Chapter 13. Case study: data structure selection

13.9 Markov analysis

A series of random words seldom makes a sentence because there is no correlation
between successive words. For example, in a real sentence you would expect an
article like “the” to be followed by an adjective or a noun, and probably not a
verb or adverb.

One way to measure these kinds of relationships is Markov analysis, which
characterizes, for a given sequence of words, the probability of the word that
comes next. For example, the song Eric, the Half a Bee begins:

Half a bee, philosophically, Must, ipso facto, half not be. But half
the bee has got to be Vis a vis, its entity. D’you see?

But can a bee be said to be Or not to be an entire bee When half
the bee is not a bee Due to some ancient injury?

In this text, the phrase “half the” is always followed by the word “bee,” but the
phrase “the bee” might be followed by either “has” or “is”.

The result of Markov analysis is a mapping from each prefix (like “half the” and
“the bee”) to all possible suffixes (like “has” and “is”).

Given this mapping, you can generate a random text by starting with any prefix
and choosing at random from the possible suffixes. Next, you can combine the
end of the prefix and the new suffix to form the next prefix, and repeat.

For example, if you start with the prefix “Half a,” then the next word has to be
“bee,” because the prefix only appears once in the text. The next prefix is “a
bee,” so the next suffix might be “philosophically,” “be” or “due.”

In this example the length of the prefix is always two, but you can do Markov
analysis with any prefix length. The length of the prefix is called the “order”
of the analysis.
Exercise 13.6. Write a program to read a text from a file and perform Markov
analysis. The result should be a dictionary that maps from prefixes to a collection
of possible suffixes. The collection might be a list, tuple, or dictionary; it is up
to you to make an appropriate choice. You can text your program with prefix
length two, but you should write the program in a way that makes it easy to try
other lengths.
Exercise 13.7. Add a function to the previous program to generate random
text based on the Markov analysis. Here is an example from Emma with prefix
length 2:

He was very clever, be it sweetness or be angry, ashamed or only
amused, at such a stroke. She had never thought of Hannah till you
were never meant for me?” ”I cannot make speeches, Emma:” he
soon cut it all himself.

13.10. Data structures 143

For this example, I left the punctuation attached to the words. The result is
almost syntactically correct, but not quite. Semantically, it almost makes sense,
in places, but not quite.

What happens if you increase the prefix length? Does the random text make
more sense?
Exercise 13.8. Once your program is working, you might want to try a mash-
up: if you analyze text from two or more books, the random text you generate
will blend the vocabulary and phrases from the sources in interesting ways.

13.10 Data structures

Using Markov analysis to generate random text is fun, but there is also a point
to this exercise: data structure selection.

Lists, dictionaries and tuples, and their combinations, like lists of tuples, are
known as data structures. When you design programs, one of the decision
you have to make is which data structures to use.

For example, in your solution to the previous exercises, you had to choose:

• How to represent the prefixes.

• How to represent the collection of possible suffixes.

• How to represent the mapping from each prefix to the collection of possible
suffixes.

The last one is the easiest; the only mapping type we have seen is a dictionary,
so it is the natural choice.

For the prefixes, the most obvious options are string, list of strings, or tuple of
strings. For the suffixes, one option is a list another is a histogram (dictionary
that maps strings to integers).

How should you choose? The first step is to think about the operations you will
need to implement for each data structure. For the prefixes, we need to be able
to remove words from the beginning and add to the end. For example, if the
current prefix is “Half a,” and the next word is “bee,” you need to be able to
form the next prefix, “a bee.”

Your first choice might be a list, since it is easy to add and remove elements,
but we also need to be able to use the prefixes as keys in a dictionary, so that
rules out lists. With tuples, you can’t append or remove, but you can use the
addition operator to form a new tuple:

def shift(prefix, word):

return prefix[1:] + (word,)

144 Chapter 13. Case study: data structure selection

shift takes a tuple of words, prefix, and a string, word, and forms a new tuple
that has all the words in prefix except the first, and word added to the end.

For the collection of suffixes, the operations we need to perform include adding
a new suffix (or increasing the frequency of an existing one), and choosing a
random suffix.

Adding a new suffix is equally easy for the list implementation or the histogram.
Choosing a random element from a list is easy; choosing from a histogram is
harder and not very efficient (see Section 13.8).

So far we have been talking mostly about ease of implementation, but there
are other factors to consider in choosing data structures. One is run time.
Sometimes there is a theoretical reason to expect one data structure to be
faster than other; for example, I mentioned that the in operator is faster for
dictionaries than for lists, at least when the number of elements is large.

But often you don’t know ahead of time which implementation will be faster.
One option is to implement both of them and see which is better. This approach
is called benchmarking. A practical alternative is to choose the data structure
that is easiest to implement, and then see if it is fast enough for the intended
application. If so, there is no need to go on. If not, there are tools, like the
profile module, that can identify the places in a program that take the most
time.

The other factor to consider is storage space. For example, using a histogram for
the collection of suffixes might take less space because you only have to store
each word once, no matter how many times it appears in the text. In some
cases, saving space can also make your program run faster, and in the extreme,
your program might not run at all if you run out of memory. But for many
applications, space is a secondary consideration after run time.

One final thought: in this discussion, I have implied that we would use one data
structure for both analysis and generation. But since these are separate phases,
it would also be possible to use one structure for analysis and then convert to
another structure for generation. This would be a net win if the time saved
during generation exceeded the time spent in conversion.

13.11 Debugging

Scaling up and scaling down.

If you are looking for a needle in a haystack, choose a small haystack.

13.12. Glossary 145

13.12 Glossary

DSU: Abbreviation of “decorate-sort-undecorate,” a processing pattern that
involves building a list of tuples, sorting, and (often) extracting part of
the result.

deterministic: Pertaining to a program that does the same thing each time it
runs, given the same inputs.

pseudorandom: Pertaining to a sequence of numbers that appear to be ran-
dom, but are generated by a deterministic program.

default value: The value given to an optional parameter if no argument is
provided.

override: To replace a default value with an argument.

data structure: Any collection of values, including sequences and dictionaries.

benchmarking: The process of choosing between data structures by imple-
menting alternatives and testing them on a sample of the possible inputs.

146 Chapter 13. Case study: data structure selection

Chapter 14

Files

14.1 Persistence

Most of the programs we have seen so far are transient in the sense that they
run for a short time and produce some output, but when they end, their data
disappears. If you run the program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time);
they keep at least some of their data in non-volatile storage (a hard drive, for
example); and if they shut down and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which run pretty much
whenever a computer is on, and web servers, which run all the time, waiting for
requests to come in on the network.

One of the simplest ways for programs to maintain their data is by reading and
writing text files. We have already seen programs that read text files; in this
chapters we will see programs that write them.

An alternative is to store the state of the program in a database. In this chapter
I will present a simple database and a module, pickle, that makes it easy to
store program data.

14.2 Reading and writing

A text file is a sequence of characters stored on a permanent medium like a hard
drive, flash memory, or CD-ROM. To read a file, you can use open to create a
file object:

148 Chapter 14. Files

>>> fin = open(’words.txt’)

>>> print fin

<open file ’words.txt’, mode ’r’ at 0xb7eb2380>

Mode ’r’ means that this file is open for reading. The file object provides
several methods for reading data, including readline:

>>> line = fin.readline()

>>> print line

aa

The file object keeps track of where it is in the file, so if you invoke readline

again, it picks up from where it left off. You can also use a file object in a for
loop, as we saw in Section 9.1.

To write a file, you have to create a file object with mode ’w’ as a second
parameter:

>>> fout = open(’output.txt’, ’w’)

>>> print fout

<open file ’output.txt’, mode ’w’ at 0xb7eb2410>

If the file already exists, opening it in write mode clears out the old data and
starts fresh, so be careful! If the file doesn’t exist, a new one is created.

The write method puts data into the file.

>>> line1 = "This here’s the wattle,\n"

>>> fout.write(line1)

Again, the file object keeps track of where it is, so if you call write again, it
add the new data to the end.

>>> line2 = "the emblem of our land.\n"

>>> fout.write(line2)

When you are done writing, you have to close the file.

>>> fout.close()

14.3 Format operator

The argument of write has to be a string, so if we want to put other values in
a file, we have to convert them to strings. The easiest way to do that is with
str:

>>> x = 52

>>> f.write (str(x))

14.3. Format operator 149

An alternative is to use the format operator, %. When applied to integers, %
is the modulus operator. But when the first operand is a string, % is the format
operator.

The first operand is the format string, and the second operand is a tuple of
expressions. The result is a string that contains the values of the expressions,
formatted according to the format string.

As an example, the format sequence ’%d’ means that the first expression in
the tuple should be formatted as an integer (d stands for “decimal”):

>>> camels = 42

>>> ’%d’ % camels

’42’

The result is the string ’42’, which is not to be confused with the integer value
42.

A format sequence can appear anywhere in the format string, so you can embed
a value in a sentence:

>>> camels = 42

>>> ’I have spotted %d camels.’ % camels

’I have spotted 42 camels.’

The format sequence ’%g’ formats the next element in the tuple as a floating-
point number (don’t ask why), and ’%s’ formats the next item as a string:

>>> ’In %d years I have spotted %g %s.’ % (3, 0.1, ’camels’)

’In 3 years I have spotted 0.1 camels.’

By default, the floating-point format prints six decimal places.

The number of elements in the tuple has to match the number of format se-
quences in the string. Also, the types of the elements have to match the format
sequences:

>>> ’%d %d %d’ % (1, 2)

TypeError: not enough arguments for format string

>>> ’%d’ % ’dollars’

TypeError: illegal argument type for built-in operation

In the first example, there aren’t enough elements; in the second, the element
is the wrong type.

You can specify the number of digits as part of the format sequence. For exam-
ple, the sequence ’%8.2f’ formats a floating-point number to be 8 characters
long, with 2 digits after the decimal point:

>>> ’%8.2f’ % 3.14159

’ 3.14’

The result takes up eight spaces with two digits after the decimal point.

150 Chapter 14. Files

14.4 Filenames and paths

Files are organized into directories (also called “folders”). Every running pro-
gram has a “current directory,” which is the default directory for most opera-
tions. For example, when you create a new file with open, the new file goes in
the current directory. And when you open a file for reading, Python looks for
it in the current directory.

The module os provides functions for working with files and directories (“os”
stands for “operating system”). os.getcwd returns the name of the current
directory:

>>> import os

>>> cwd = os.getcwd()

>>> print cwd

/home/dinsdale

cwd stands for “current working directory.” The result in this example is
/home/dinsdale, which is the home directory of a user named dinsdale.

A string like cwd that identifies a file is called a path. A relative path starts
from the current directory; an absolute path starts from the topmost directory
in the file system.

The paths we have seen so far are simple filenames, so they are relative to the
current directory. To find the absolute path to a file, you can use abspath,
which is in the module os.path.

>>> os.path.abspath(’memo.txt’)

’/home/dinsdale/memo.txt’

os.path.exists checks whether the file (or directory) specified by a path exists:

>>> os.path.exists(’memo.txt’)

True

If it exists, os.path.isdir checks whether it’s a directory:

>>> os.path.isdir(’memo.txt’)

False

>>> os.path.isdir(’music’)

True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given direc-
tory:

>>> os.listdir(cwd)

[’music’, ’photos’, ’memo.txt’]

14.5. Catching exceptions 151

To demonstrate these functions, the following example “walks” through a di-
rectory, prints the names of all the files, and calls itself recursively on all the
directories.

def walk(dir):

for name in os.listdir(dir):

path = os.path.join(dir, name)

if os.path.isfile(path):

print path

else:

walk(path)

os.path.join takes a directory and a file name and joins them into a complete
path.
Exercise 14.1. Modify walk so that instead of printing the names of the files,
it returns a list of names.

14.5 Catching exceptions

A lot of things can go wrong when you try to read and write files. If you try to
open a file that doesn’t exist, you get an IOError:

>>> fin = open(’bad_file’)

IOError: [Errno 2] No such file or directory: ’bad_file’

If you don’t have permission to access a file:

>>> fout = open(’/etc/passwd’, ’w’)

IOError: [Errno 13] Permission denied: ’/etc/passwd’

And if you try to open a directory for reading, you get

>>> fin = open(’/home’)

IOError: [Errno 21] Is a directory

To avoid these errors, you could use functions like os.path.exists and
os.path.isfile, but it would take a lot of time and code to check all the
possibilities (based on the last error message, there are at least 21 things that
can go wrong).

It is better to go ahead and try, and deal with problems if they happen, which is
exactly what the try statement does. The syntax is similar to an if statement:

try:

fin = open(’bad_file’)

for line in fin:

152 Chapter 14. Files

print line

fin.close()

except:

print ’Something went wrong.’

Python starts by executing the try clause. If all goes well, it skips the except

clause and proceeds. If an exception occurs, it jumps out of the try clause and
executes the except clause.

Handling an exception with a try statement is called catching an exception. In
this example, the except clause prints an error message that is not very helpful.
In general, catching an exception gives you a chance to fix the problem, or try
again, or at least end the program gracefully.

14.6 Databases

A database is a file that is organized for storing data. Most databases are
organized like a dictionary in the sense that they map from keys to values. The
biggest difference is that the database is on disk (or other non-volatile storage),
so it persists after the program ends.

The module anydbm provides an interface for creating and updating database
files. As an example, I’ll create a database that contains captions for image
files.

Opening a database is similar to opening other files:

>>> import anydbm

>>> db = anydbm.open(’captions.db’, ’c’)

The mode ’c’ means that the database should be created if it doesn’t already
exist. The result is a database object that can be used (for most operations)
like a dictionary. If you create a new item, anydbm updates the database file.

>>> db[’cleese.png’] = ’Photo of John Cleese.’

When you access one of the items, anydbm reads the file:

>>> print db[’cleese.png’]

Photo of John Cleese.

If you make another assignment to an existing key, anydbm replaces the old
value:

>>> db[’cleese.png’] = ’Photo of John Cleese doing a silly walk.’

>>> print db[’cleese.png’]

Photo of John Cleese doing a silly walk.

14.7. Pickling 153

Many dictionary methods, like keys and items, also work with database objects.
So does iteration with a for statement.

for key in db:

print key

As with other files, you should close the database when you are done:

>>> db.close()

14.7 Pickling

A limitation of anydbm is that the keys and values have to be strings. If you try
to use any other type, you get an error.

But the pickle module can help. It translates almost any type of object into a
string, suitable for storage in a database, and then translates strings back into
objects.

pickle.dumps takes an object as a parameter and returns a string representa-
tion (dumps is short for “dump string”):

>>> import pickle

>>> t = [1, 2, 3]

>>> pickle.dumps(t)

’(lp0\nI1\naI2\naI3\na.’

The format isn’t obvious to human readers; it is meant to be easy for pickle

to interpret. pickle.loads (“load string”) reconstitutes the object:

>>> t1 = [1, 2, 3]

>>> s = pickle.dumps(t1)

>>> t2 = pickle.loads(s)

>>> print t2

[1, 2, 3]

Although the new object has the same value as the old, it is not (in general)
the same object:

>>> t == t2

True

>>> t is t2

False

In other words, pickling and then unpickling has the same effect as copying the
object.

You can use pickle to store non-strings in a database. In fact, this combination
is so common that it has been encapsulated in a module called shelve.

154 Chapter 14. Files

Exercise 14.2. If you did Exercise 12.3, modify your solution so that it creates
a database that maps from each word in the list to a list of words that use the
same set of letters.

Write a different program that opens the database and prints the contents in a
human-readable format.

14.8 Debugging

Print and then write.

14.9 Glossary

persistent: Pertaining to a program that runs indefinitely and keeps at least
some of its data in permanent storage.

format operator: An operator, %, that takes a format string and a tuple and
generates a string that includes the elements of the tuple formatted as
specified by the format string.

format string: A string, used with the format operator, that contains format
sequences.

format sequence: A sequence of characters in a format string, like %d that
specifies how a value should be formatted.

text file: A sequence of characters stored in non-volatile storage like a hard
drive.

directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file sys-
tem.

catch: To prevent an exception from terminating a program using the try and
except statements.

database: A file whose contents are organized like a dictionary with keys that
correspond to values.

Chapter 15

Classes and objects

15.1 User-defined types

We have used many of Python’s built-in types; now we are going to define a
new type. As an example, we will create a type called Point that represents a
point in two-dimensional space.

In mathematical notation, points are often written in parentheses with a comma
separating the coordinates. For example, (0, 0) represents the origin, and (x, y)
represents the point x units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than the other options, but
it has advantages that will be apparent soon.

A user-defined type is also called a class. A class definition looks like this:

class Point:

"""represents a point in 2-D space"""

This header indicates that the new class is called Point. The body is a docstring
that explains what the class is for. You can define variables and functions inside
a class definition, but we will get back to that later.

Defining a class named Point creates a class object, also named Point.

156 Chapter 15. Classes and objects

>>> print Point

__main__.Point

>>> type(Point)

<type ’classobj’>

Because Point is defined at the top level, its “full name” is main .Point.

The class object is like a factory for creating objects. To create a Point, you
call Point as if it were a function.

>>> blank = Point()

>>> print blank

<__main__.Point instance at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank.
Creating a new object is called instantiation, and the object is and instance

of the class.

15.2 Attributes

You can assign values to an instance using dot notation:

>>> blank.x = 3.0

>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such
as math.pi or string.uppercase. In this case, though, we are assigning values
to named elements of an object. These elements are called attributes.

The following diagram shows the result of these assignments. A state diagram
that shows an object and its attributes is called an object diagram:

x

y

3.0

4.0

blank

Point

The variable blank refers to a Point object, which contains two attributes. Each
attribute refers to a floating-point number.

We can read the value of an attribute using the same syntax:

>>> print blank.y

4.0

>>> x = blank.x

>>> print x

3.0

15.3. Rectangles 157

The expression blank.x means, “Go to the object blank refers to and get the
value of x.” In this case, we assign that value to a variable named x. There is
no conflict between the variable x and the attribute x.

You can use dot notation as part of any expression. For example:

>>> print ’(%g, %g)’ % (blank.x, blank.y)

(3.0, 4.0)

>>> distance = math.sqrt(blank.x**2 + blank.y**2)

>>> print distance

5.0

You can pass an instance as an argument in the usual way. For example:

def print_point(p):

print ’(%g, %g)’ % (p.x, p.y)

print point takes a point as an argument and displays it in mathematical
notation. To invoke it, you can pass blank as an argument:

>>> print_point(blank)

(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank
changes.
Exercise 15.1. Write a function called distance that it takes two Points as
arguments and returns the distance between them.

15.3 Rectangles

Sometimes it is obvious what the attributes of an object should be, but other
times you have to make decisions. For example, imagine you are designing a
class to represent rectangles. What attributes would you use to specify the
location and size of a rectangle? You can ignore angle; to keep things simple,
assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width,
and the height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll
implement the first one, just as an example.

Here is the class definition:

158 Chapter 15. Classes and objects

class Rectangle:

"""represent a rectangle.

attributes: width, height, corner.

"""

The docstring lists the attribute names. width and height are numbers; corner
is a Point object that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign
values to the attributes:

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select
the attribute named corner; then go to that object and select the attribute
named x.”

The figure shows the state of this object:

y

0.0x

0.0

width

height

100.0

corner

200.0
Point

Rectangle

box

15.4 Instances as return values

Functions can return instances. For example, find center takes a Rectangle

as an argument and returns a Point that contains the coordinates of the center
of the Rectangle:

def find_center(box):

p = Point()

p.x = box.corner.x + box.width/2.0

p.y = box.corner.y + box.height/2.0

return p

Here is an example that passes box as an argument and assign the resulting
Point to center:

15.5. Objects are mutable 159

>>> center = find_center(box)

>>> print_point(center)

(50.0, 100.0)

15.5 Objects are mutable

We can change the state of an object by making an assignment to one of its
attributes. For example, to change the size of a rectangle without changing its
position, you can modify the values of width and height:

box.width = box.width + 50

box.height = box.width + 100

You can also write functions that modify objects. For example, grow rectangle

takes a Rectangle object and two numbers, dwidth and dheight, and adds the
numbers to the width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight) :

rect.width += dwidth

rect.height += dheight

Here is an example that demonstrates the effect:

>>> print box.width

100.0

>>> print box.height

200.0

>>> grow_rectangle(box, 50, 100)

>>> print box.width

150.0

>>> print box.height

300.0

Inside the function, rect is an alias for box, so if the function modifies rect,
box changes.
Exercise 15.2. Write a function named move rectangle that takes a Rectangle
and two numbers named dx and dy. It should change the location of the rectangle
by adding dx to the x coordinate of corner and adding dy to the y coordinate
of corner.

15.6 Copying

Aliasing can make a program difficult to read because changes made in one place
might have unexpected effects in another place. It is hard to keep track of all
the variables that might refer to a given object.

160 Chapter 15. Classes and objects

Copying an object is often an alternative to aliasing. The copy module contains
a function called copy that can duplicate any object:

>>> p1 = Point()

>>> p1.x = 3.0

>>> p1.y = 4.0

>>> import copy

>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.

>>> print_point(p1)

(3.0, 4.0)

>>> print_point(p2)

(3.0, 4.0)

>>> p1 is p2

False

>>> p1 == p2

False

The is operator indicates that p1 and p2 are not the same object, which is
what we expected. But you might have expected == to yield True because these
points contain the same data. In that case, you will be disappointed to learn
that for instances, the default behavior of the == operator is the same as the is

operator; it checks object identity, not object equivalence.

This behavior can be changed, so for many objects defined in Python modules,
the == operator checks equivalence (in whatever sense is appropriate). But the
default is to check identity.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the
Rectangle object but not the embedded Point.

>>> box2 = copy.copy(box)

>>> box2 is box

False

>>> box2.corner is box.corner

True

Here is what the object diagram looks like:

y

0.0x

0.0

100.0

200.0

width

height

100.0

corner

200.0

width

height

corner

box box2

15.7. Debugging 161

This operation is called a shallow copy because it copies the object and any
references it contains, but not the embedded objects.

For most applications, this is not what you want. In this example, invoking
grow rectangle on one of the Rectangles would not affect the other, but in-
voking move rectangle on either would affect both! This behavior is confusing
and error-prone.

Fortunately, the copy module contains a method named deepcopy that copies
not only the object but also the objects it refers to, and they objects they refer
to, and so on. You will not be surprised to learn that this operation is called a
deep copy.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.corner is box.corner

False

box3 and box are completely separate objects.
Exercise 15.3. Write a version move rectangle that it creates and returns a
new Rectangle instead of modifying the old one.

15.7 Debugging

When you start working with objects, you are likely to encounter some new
exceptions. If you try to access an attribute that doesn’t exist, you get an
AttributeError:

>>> p = Point(3, 4)

>>> print p.z

AttributeError: Point instance has no attribute ’z’

If you are not sure what type an object is, you can ask:

>>> type(p)

<type ’instance’>

This result tells us that p is an object, but not what kind. But all objects have
a special attribute named class that refers to the object’s class.

>>> print p.__class__

__main__.Point

If you are not sure whether an object has a particular attribute, you can use
the built-in function hasattr:

162 Chapter 15. Classes and objects

>>> hasattr(p, ’x’)

True

>>> hasattr(p, ’z’)

False

The first object can be any object; the second argument is a string that contains
the name of the attribute.

Another way to access the attributes of an object is through the special attribute
dict , which is a dictionary that maps from attribute names (as strings) and

values:

>>> print p.__dict__

{’y’: 4, ’x’: 3}

For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):

for attr in obj.__dict__:

print attr, getattr(obj, attr)

print attributes traverses the items in the object’s dictionary print each at-
trbute name and its corresponding value.

The built-in function getattr takes an object and an attribute name (as a
string) and returns the attribute’s value.

15.8 Glossary

class: A user-defined type. A class definition creates a new class object.

class object: An object that contains information about a user-defined time.
The class object can be used to create instances of the type.

instance: An object that belongs to a class.

attribute: One of the named values associated with an object.

shallow copy: To copy the contents of an object, including any references to
embedded objects; implemented by the copy function in the copy module.

deep copy: To copy the contents of an object as well as any embedded ob-
jects, and any objects embedded in them, and so on; implemented by the
deepcopy function in the copy module.

object diagram: A diagram that shows objects, their attributes, and the val-
ues of the attributes.

15.9 Exercises

Chapter 16

Classes and functions

16.1 Time

As another example of a user-defined type, we’ll define a class called Time that
records the time of day. The class definition looks like this:

class Time:

"""represents the time of day

attributes: hour, minute, second"""

We can create a new Time object and assign attributes for hours, minutes, and
seconds:

time = Time()

time.hour = 11

time.minute = 59

time.second = 30

The state diagram for the Time object looks like this:

59

30

hour

minute

second

11

Time

time

Exercise 16.1. Write a function print time that takes a Time object and
prints it in the form hour:minute:second.
Exercise 16.2. Write a boolean function after that takes two Time objects, t1
and t2, and returns True if t1 follows t2 chronologically and False otherwise.

164 Chapter 16. Classes and functions

16.2 Pure functions

In the next few sections, we’ll write two versions of a function called add time,
which calculates the sum of two Time objects. They demonstrate two kinds of
functions: pure functions and modifiers. They also demonstrate a development
plan I’ll call prototype and patch, which is a way of tackling a complex
problem by starting with a simple prototype and incrementally dealing with the
complications.

Here is a simple prototype of add time:

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

return sum

The function creates a new Time object, initializes its attributes, and returns a
reference to the new object. This is called a pure function because it does not
modify any of the objects passed to it as arguments and it has no side effects,
such as displaying a value or getting user input.

To test this function, I’ll create two Time objects: start contains the start time
of a movie, like Monty Python and the Holy Grail, and duration contains the
run time of the movie, which is one hour 35 minutes.

add time figures out when the movie will be done.

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 0

>>> duration = Time()

>>> duration.hour = 1

>>> duration.minute = 35

>>> duration.second = 0

>>> done = add_time(start, duration)

>>> print_time(done)

10:80:00

The result, 10:80:00 might not be what you were hoping for. The problem
is that this function does not deal with cases where the number of seconds or
minutes adds up to more than sixty. When that happens, we have to “carry”
the extra seconds into the minute column or the extra minutes into the hour
column.

16.3. Modifiers 165

Here’s an improved version:

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

if sum.second >= 60:

sum.second -= 60

sum.minute += 1

if sum.minute >= 60:

sum.minute -= 60

sum.hour += 1

return sum

Although this function is correct, it is starting to get big. We will see a shorter
alternative later.

16.3 Modifiers

Sometimes it is useful for a function to modify the objects it gets as parameters.
In that case, the changes are visible to the caller. Functions that work this way
are called modifiers.

increment, which adds a given number of seconds to a Time object, can be
written naturally as a modifier. Here is a rough draft:

def increment(time, seconds):

time.second += seconds

if time.second >= 60:

time.second -= 60

time.minute += 1

if time.minute >= 60:

time.minute -= 60

time.hour += 1

The first line performs the basic operation; the remainder deals with the special
cases we saw before.

Is this function correct? What happens if the parameter seconds is much
greater than sixty? In that case, it is not enough to carry once; we have to keep

166 Chapter 16. Classes and functions

doing it until time.second is less than sixty. One solution is to replace the if

statements with while statements. That would make the function correct, but
not very efficient.
Exercise 16.3. Write a correct version of increment that doesn’t contain any
loops.

Anything that can be done with modifiers can also be done with pure functions.
In fact, some programming languages only allow pure functions. There is some
evidence that programs that use pure functions are faster to develop and less
error-prone than programs that use modifiers. But modifiers are convenient at
times, and functional programs tend to be less efficient.

In general, I recommend that you write pure functions whenever it is reasonable
and resort to modifiers only if there is a compelling advantage. This approach
might be called a functional programming style.
Exercise 16.4. Write a “pure” version of increment that creates and returns
a new Time object rather than modifying the parameter.

16.4 Prototyping versus planning

In this chapter, I demonstrated development plan called “prototype and patch.”
For each function, I wrote a rough draft that performed the basic calculation
and then tested, correcting flaws along the way.

Although this approach can be effective, especially if you don’t yet have a deep
understanding of the problem. But incremental patching can generate code
that is unnecessarily complicated—since it deals with many special cases—and
unreliable—since it is hard to know if you have found all the errors.

An alternative is planned development, in which high-level insight into the
problem can make the programming much easier. In this case, the insight is that
a Time object is really a three-digit number in base 60! The second attribute is
the “ones column,” the minute attribute is the “sixties column,” and the hour

attribute is the “thirty-six hundreds column.”

When we wrote add time and increment, we were effectively doing addition in
base 60, which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can con-
vert Time objects to integers and take advantage of the fact that the computer
knows how to do integer arithmetic.

Here is the function that converts Times to integers:

def time_to_int(time):

minutes = time.hour * 60 + time.minute

seconds = minutes * 60 + time.second

return seconds

16.5. Debugging 167

And here is the function that converts integers to Times (recall that divmod

divides the first argument by the second and returns the quotient and remainder
as a tuple).

def int_to_time(seconds):

time = Time()

minutes, time.second = divmod(seconds, 60)

time.hour, time.minute = divmod(minutes, 60)

return time

You might have to think a bit, and run some tests, to convince yourself that
these functions are correct. But once they are debugged, you can use them to
rewrite add time:

def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

This version is shorter than the original, and easier to verify.
Exercise 16.5. Rewrite increment using time to int and int to time.

In some ways, converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

But if we have the insight to treat times as base 60 numbers and make the
investment of writing the conversion functions (time to int and int to time),
we get a program that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two
Times to find the duration between them. The näıve approach would be to
implement subtraction with borrowing. Using the conversion functions would
be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes it easier
(because there are fewer special cases and fewer opportunities for error).

16.5 Debugging

A Time object is well-formed if the values of minutes and seconds are between
0 and 60 (including 0 but not 60) and if hours is positive. hours and minutes

should be integral values, but we might allow seconds to have a fraction part.

These kind of requirements are called invariants...

Self-testing, checking whether time to int and int to time are consistent.

168 Chapter 16. Classes and functions

16.6 Glossary

prototype and patch: A development plan that involves writing a rough
draft of a program, testing, and correcting errors as they are found.

planned development: A development plan that involves high-level insight
into the problem and more planning than incremental development or
prototype development.

pure function: A function that does not modify any of the objects it receives
as arguments. Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receives as
arguments. Most modifiers are fruitless.

functional programming style: A style of program design in which the ma-
jority of functions are pure.

16.7 Exercises

Exercise 16.6. Write function called mul time that takes a Time object and a
number and returns a new Time object that contains the product of the original
Time and the number.

Then use mul time to write a function that takes a Time object that represents
the finishing time in a race, and a number that represents the distance, and
returns a Time object that represents the average pace (time per mile).
Exercise 16.7.

Exercise 16.8.

Chapter 17

Classes and methods

17.1 Object-oriented features

Python is an object-oriented programming language, which means that it
provides features that support object-oriented programming.

It is not easy to define object-oriented programming, but we have already seen
some of its characteristics:

• Programs are made up of object definitions and function definitions, and
most of the computation is expressed in terms of operations on objects.

• Each object definition corresponds to some object or concept in the real
world, and the functions that operate on that object correspond to the
ways real-world objects interact.

For example, the Time class defined in Chapter 16 corresponds to the way people
record the time of day, and the functions we defined correspond to the kinds
of things people do with times. Similarly, the Point and Rectangle classes
correspond to the mathematical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to sup-
port object-oriented programming. Strictly speaking, these features are not
necessary. For the most part, they provide an alternative syntax for things we
have already done, but in many cases, the alternative is more concise and more
accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between the
class definition and the function definitions that follow. With some examination,
it is apparent that every function takes at least one Time object as an argument.

170 Chapter 17. Classes and methods

This observation is the motivation for methods; a method is a function that
is associated with a particular class. For example, we have seen methods for
strings, lists, dictionaries and tuples. In this chapter, we will define methods
for user-defined types.

Methods are semantically the same as functions, but there are two syntactic
differences:

• Methods are defined inside a class definition in order to make the rela-
tionship between the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling
a function.

In the next few sections, we will take the functions from the previous two chap-
ters and transform them into methods. This transformation is purely mechani-
cal; you can do it simply by following a sequence of steps. If you are comfortable
converting from one form to another, you will be able to choose the best form
for whatever you are doing.

17.2 print time

In Chapter 16, we defined a class named Time and in Exercise 16.1, you wrote
a function named print time:

class Time:

"""represents the time of day

attributes: hour, minute, second"""

def print_time(time):

print ’%.2d:%.2d:%.2d’ % (time.hour, time.minute, time.second)

To call this function, you have to pass a Time object as an argument:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

>>> print_time(start)

09:45:00

To make print time a method, all we have to do is move the function definition
inside the class definition. Notice the change in indentation.

class Time:

def print_time(time):

print ’%.2d:%.2d:%.2d’ % (time.hour, time.minute, time.second)

17.3. Another example 171

Now there are two ways to call print time. The first (and less common) way
is to use function syntax:

>>> Time.print_time(start)

09:45:00

In this use of dot notation, Time is the name of the class, and print time is
the name of the method. start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()

09:45:00

In this use of dot notation, print time is the name of the method (again),
and start is the object the method is invoked on, which is called the subject.
Just as the subject of a sentence is what the sentence is about, the subject of a
method invocation is what the method is about.

Inside the method, the subject is assigned to the first parameter, so in this case
start is assigned to time.

By convention, the first parameter of a method is called self, so it would be
more common to write print time like this:

class Time:

def print_time(self):

print ’%.2d:%.2d:%.2d’ % (self.hour, self.minute, self.second)

The reason for this convention is convoluted, but it is based on a useful
metaphor:

The syntax for a function call, print time(start), suggests that the function
is the active agent. It says something like, “Hey print time! Here’s an object
for you to print.”

In object-oriented programming, the objects are the active agents. A method
invocation like start.print time() says “Hey start! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it
is useful. In the examples we have seen so far, it may not be. But sometimes
shifting responsibility from the functions onto the objects makes it possible to
write more versatile functions, and makes it easier to maintain and reuse code.
Exercise 17.1. Rewrite time to int (from Section 16.4) as a method. It is
probably not appropriate to rewrite int to time as a method; it’s not clear what
object you would invoke it on!

17.3 Another example

Here’s a version of increment (from Section 16.3) rewritten as a method:

172 Chapter 17. Classes and methods

inside class Time:

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

This version assumes that time to int is written as a method, as in Exer-
cise 17.1. Also, note that it is a pure function, not a modifier.

Here’s how you would invoke increment:

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)

>>> end.print_time()

10:07:17

The subject, start, gets assigned to the first parameter, self. The argument,
1337, gets assigned to the second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example,
if you invoke increment with two arguments, you get:

>>> end = start.increment(1337, 460)

TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because there are only two arguments
in parentheses. But the subject is also considered an argument, so all together
that’s three.
Exercise 17.2. Convert time to int (from Section 16.4) to a method in the
Time class.

17.4 A more complicated example

after (from Exercise 16.2) is slightly more complicated because it takes two
Time objects as parameters. In this case it is conventional to name the first
parameter self and the second parameter other:

inside class Time:

def after(self, other):

return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as
an argument:

>>> end.after(start)

True

17.5. The init method 173

One nice thing about this syntax is that it has the same word order as English,
subject-verb-object.

17.5 The init method

The init method (short for “initialization”) is a special method that gets in-
voked when an object is instantiated. Its full name is init (two underscore
characters, followed by init, and then two more underscores). An init method
for the Time class might look like this:

inside class Time:

def __init__(self, hour=0, minute=0, second=0):

self.hour = hour

self.minute = minute

self.second = second

It is common for the parameters of init to have the same names as the
attributes. The statement

self.hour = hour

stores the value of the parameter hour as an attribute in the new Time object
self.

The parameters are optional, so if you call Time with no arguments, you get the
default values.

>>> time = Time()

>>> time.print_time()

00:00:00

If you provide one argument, it overrides hour:

>>> time = Time (9)

>>> time.print_time()

09:00:00

If you provide two arguments, they override hour and minute.

>>> time = Time(9, 45)

>>> time.print_time()

09:45:00

And if you provide three arguments, they override all three default values.
Exercise 17.3. Write an init method for the Point class that takes x and y as
optional parameters and assigns them to the corresponding attributes.

174 Chapter 17. Classes and methods

17.6 The str method

str is a special method name, like init , that is supposed to return a
string representation of an object.

For example, here is a str method for Time objects:

inside class Time:

def __str__(self):

return ’%.2d:%.2d:%.2d’ % (self.hour, self.minute, self.second)

When you print an object, Python invokes the str method:

>>> time = Time(9, 45)

>>> print time

09:45:00

When I write a new class, I almost always start by writing init , which makes
it easier to instantiate objects, and str , which is almost always useful for
debugging.
Exercise 17.4. Write a str method for the Point class. Create a Point object
and print it.

17.7 Operator overloading

By defining other special methods, you can specify the behavior of operators
on user-defined types. For example, if you define an add method for the Time

class, you can use the + operator on Time objects.

Here is what the definition might look like:

inside class Time:

def __add__(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

And here is how you could use it:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print start + duration

11:20:00

When you apply the + operator to Time objects, Python invokes add . When
you print the result, Python invokes str . So there is quite a lot happening
behind the scenes!

17.8. Type-based dispatch 175

Changing the behavior of an operator so that it works with user-defined types
is called operator overloading. For every operator in Python there is a cor-
responding special method, like add .
Exercise 17.5. Write an add method for the Point class.

17.8 Type-based dispatch

In the previous section we added two Time objects, but you also might want
to add an integer to a Time object. The following is an alternative version of
add that checks the type of other and invokes either add time or increment:

inside class Time:

def __add__(self, other):

if isinstance(other, Time):

return self.add_time(other)

else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

The built-in function isinstance takes a value and a class object, and returns
True if the value is an instance of the class.

If other is a Time object, add invokes add time. Otherwise it assumes that
the seconds parameter is a number and invokes increment. This operation
is called a type-based dispatch because it dispatches the computation to
different methods based on the type of the arguments.

Here are examples that use the + operator with different types:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print start + duration

11:20:00

>>> print start + 1337

10:07:17

Unfortunately, this implementation of addition is not commutative. If the inte-
ger is the first operand, you get

176 Chapter 17. Classes and methods

>>> print 1337 + start

TypeError: unsupported operand type(s) for +: ’int’ and ’instance’

The problem is, instead of asking the Time object to add an integer, Python is
asking an integer to add a Time object, and it doesn’t know how to do that.
But there is a clever solution for this problem, the radd method, which stands
for “right-side add.” This method is invoked when a Time object appears on
the right side of the + operator. Here’s the definition:

inside class Time:

def __radd__(self, other):

return self.__add__(other)

And here’s how it’s used:

>>> print 1337 + start

10:07:17

Exercise 17.6. Write an add method for Points that works with either a Point
object or a tuple:

• If the second operand is a Point, the method should return a new Point
whose x coordinate is the sum of the x coordinates of the operands, and
likewise for the y coordinates.

• If the second operand is a tuple, the method should add the first element of
the tuple to the x coordinate and the second element to the y coordinate,
and return a new Point with the result.

17.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not
always necessary. Often you can avoid it by writing functions that work correctly
for arguments with different types.

Many of the functions we wrote for strings will actually work for any kind of
sequence. For example, in Section 11.1 we used histogram to count the number
of times each letter appears in a word.

def histogram(s):

d = {}

for c in s:

if c not in d:

d[c] = 1

else:

d[c] = d[c]+1

return d

17.10. Debugging 177

This function also works for lists, tuples, and even dictionaries, as long as the
elements of s are hashable, so they can be used as keys in d.

>>> t = [’spam’, ’egg’, ’spam’, ’spam’, ’bacon’, ’spam’]

>>> histogram(t)

{’bacon’: 1, ’egg’: 1, ’spam’: 4}

Functions that can work with several types are called polymorphic.

Many of the built-in functions are polymorphic. For example, sum works with
any kind of sequence, as long as the elements support the addition operator.

>>> t = [1, 2.0, 42L]

>>> print sum(t)

45.0

Since Time objects provide an add method, they work with sum:

>>> t1 = Time(7, 43)

>>> t2 = Time(7, 41)

>>> t3 = Time(7, 37)

>>> total = sum([t1, t2, t3])

>>> print total

23:01:00

In general, if all of the operations inside a function work with a given type, then
the function works with that type.

The best kind of polymorphism is the unintentional kind, where you discover
that a function you have already written can be applied to a type you never
planned for.

17.10 Debugging

Minimum debuggable units (instantiate and print).

Build debugging scaffolding as part of the program.

17.11 Glossary

object-oriented language: A language that provides features, such as user-
defined classes and inheritance, that facilitate object-oriented program-
ming.

object-oriented programming: A style of programming in which data and
the operations that manipulate it are organized into classes and methods.

178 Chapter 17. Classes and methods

method: A function that is defined inside a class definition and is invoked on
instances of that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator like + so it works
with a user-defined type.

type-based dispatch: A programming pattern that check the type of an
operand and invokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type.

Chapter 18

Inheritance

In this chapter we will develop classes to represent playing cards, decks of cards,
and poker hands. If you don’t play poker, don’t worry; I’ll tell you what you
need to know for the exercises.

But if you are not familiar with common playing cards, now would be a good
time to get a deck, or else this chapter might not make much sense.

18.1 Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits
and one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs
(in descending order in bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, and King. Depending on the game that you are playing, an Ace
may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious
what the attributes should be: rank and suit. It is not as obvious what type
the attributes should be. One possibility is to use strings containing words like
"Spade" for suits and "Queen" for ranks. One problem with this implementation
is that it would not be easy to compare cards to see which had a higher rank or
suit.

An alternative is to use integers to encode the ranks and suits. In this context,
“encode” means that we are going to define a mapping between numbers and
suits, or between numbers and ranks. This kind of encoding is not meant to be
a secret (that would be “encryption”).

For example, this table shows the suits and the corresponding integer codes:

180 Chapter 18. Inheritance

Spades 7→ 3
Hearts 7→ 2
Diamonds 7→ 1
Clubs 7→ 0

This code makes it easy to compare cards; because higher suits map to higher
numbers, we can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to
the corresponding integer, and for face cards:

Jack 7→ 11
Queen 7→ 12
King 7→ 13

I am using the 7→ symbol to make is clear that these mappings are not part
of the Python program. They are part of the program design, but they don’t
appear explicitly in the code.

The class definition for Card looks like this:

class Card:

"""represents a standard playing card."""

def __init__(self, suit=0, rank=2):

self.suit = suit

self.rank = rank

As usual, the init method takes an optional parameter for each attribute. The
default card is the 2 of Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

threeOfClubs = Card(3, 1)

In the next section we’ll figure out which card that is.

18.2 Class attributes

In order to print Card objects in a way that people can easily read, we need a
mapping from the integer codes to the corresponding ranks and suits. A natural
way to do that is with lists of strings. We assign these lists to class attributes:

inside class Card:

suit_names = [’Clubs’, ’Diamonds’, ’Hearts’, ’Spades’]

rank_names = [None, ’Ace’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’10’, ’Jack’, ’Queen’, ’King’]

18.2. Class attributes 181

def __str__(self):

return ’%s of %s’ % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

Because suit names and rank names are defined outside of any method, they
are class attributes; that is, they are associated with the class Card rather than
with a particular Card instance.

Attributes like suit and rank are more precisely called instance attributes

because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in str ,
self is a Card object, and self.rank is its rank. Similarly, Card is a class
object, and Card.rank names is a list of strings associated with the class.

Every card has its own suit and rank, but there is only one copy of suit names

and rank names.

Finally, the expression Card.rank_names[self.rank] means “use the attribute
rank from the object self as an index into the list rank names from the class
Card, and select the appropriate string.”

The first element of rank names is None because there is no card with rank zero.
By including None as a place-keeper, we get a mapping with the nice property
that the index 2 maps to the string ’2’, and so on.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(1, 11)

>>> print card1

Jack of Diamonds

Here is a diagram that shows the Card class object and one Card instance:

1

11

suit

rank

dict

card1

list

suit_names

list

rank_names

classobj

Card

Card is a class object, so it has type classobj. card1 has type Card. (To save
space, I didn’t draw the contents of suit names and rank names).

182 Chapter 18. Inheritance

18.3 Comparing cards

For built-in types, there are conditional operators (<, >, ==, etc.) that compare
values and determine when one is greater than, less than, or equal to another.
For user-defined types, we can override the behavior of the built-in operators
by providing a method named cmp .

The cmp method takes two parameters, self and other, and returns a positive
number if the first object is greater, a negative number if the second object is
greater, and 0 if they are equal to each other.

The correct ordering for cards is not obvious. For example, which is better, the
3 of Clubs or the 2 of Diamonds? One has a higher rank, but the other has a
higher suit. In order to compare cards, you have to decide whether rank or suit
is more important.

The answer might depend on what game you are playing, but to keep things
simple, we’ll make the arbitrary choice that suit is more important, so all of the
Spades outrank all of the Diamonds, and so on.

With that decided, we can write cmp :

inside class Card:

def __cmp__(self, other):

check the suits

if self.suit > other.suit: return 1

if self.suit < other.suit: return -1

suits are the same... check ranks

if self.rank > other.rank: return 1

if self.rank < other.rank: return -1

ranks are the same... it’s a tie

return 0

You can write this more concisely using tuple comparison:

inside class Card:

def __cmp__(self, other):

t1 = self.suit, self.rank

t2 = other.suit, other.rank

return cmp(t1, t2)

The built-in function cmp has the same interface as the method cmp : it takes
two values and returns a positive number if the first is larger, a negative number
of the second is larger, and 0 if they are equal.

18.4. Decks 183

Exercise 18.1. Write a cmp method for Time objects. Hint: you can use
tuple comparison, but you also might consider using integer subtraction.

18.4 Decks

Now that we have Card objects, the next step is to define a class to represent
decks. Since a deck is made up of cards, a natural choice is for each Deck object
to contain a list of cards as an attribute.

The following is a class definition for Deck. The init method creates the at-
tribute cards and generates the standard set of fifty-two cards:

class Deck:

def __init__(self):

self.cards = []

for suit in range(4):

for rank in range(1, 14):

card = Card(suit, rank)

self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop
enumerates the suits from 0 to 3. The inner loop enumerates the ranks from 1
to 13. Each iteration of the inner loop creates a new Card with the current suit
and rank, and appends it to self.cards.

18.5 Printing the deck

Here is a str method for Deck:

#inside class Deck:

def __str__(self):

res = []

for card in self.cards:

res.append(str(card))

return ’\n’.join(res)

This method demonstrates an efficient way to accumulate a large string, by
building a list of strings and then using join. The built-in function str invokes
the str method on each card and returns the string representation.

Since we invoke join on a newline character, the cards are separated by new-
lines. Here’s what the result looks like:

184 Chapter 18. Inheritance

>>> deck = Deck()

>>> print deck

Ace of Clubs

2 of Clubs

3 of Clubs

...

10 of Spades

Jack of Spades

Queen of Spades

King of Spades

Even though the result appears on 52 lines, it is one long string that contains
newlines.

18.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and
returns it. The list method pop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):

return self.cards.pop()

Since pop removes the last card in the list, we are in effect dealing from the
bottom of the deck.

To add a card, we can use the list method append:

#inside class Deck:

def add_card(self, card):

self.cards.append(card)

A method like this that uses another function without doing much real work is
sometimes called a veneer. The metaphor comes from woodworking, where it
is common to glue a thin layer of good quality wood to the surface of a cheaper
piece of wood.

In this case we are defining a “thin” method that expresses a list operation in
terms that are appropriate for decks.

As another example, we can write a Deck method named shuffle using the
function shuffle from the random module:

inside class Deck:

18.7. Inheritance 185

def shuffle(self):

random.shuffle(self.cards)

Don’t forget to import random.
Exercise 18.2. Write a Deck method named sort that uses the list method
sort to sort the cards in a Deck. sort uses the cmp method we defined to
determine sort order.

18.7 Inheritance

The language feature most often associated with object-oriented programming
is inheritance. Inheritance is the ability to define a new class that is a modified
version of an existing class.

It is called “inheritance” because the new class inherits the methods of the
existing class. Extending this metaphor, the existing class is called the parent

class and the new class is called the child.

As an example, let’s say we want a class to represent a “hand,” that is, the set
of cards held by one player. A hand is similar to a deck: both are made up of
a set of cards, and both require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands
that don’t make sense for a deck. For example, in poker we might compare two
hands to see which one wins. In bridge, we might compute a score for a hand
in order to make a bid.

This relationship between classes—similar, but different—lends itself to inheri-
tance.

The definition of a child class is like other class definitions, but the name of the
parent class appears in parentheses:

class Hand(Deck):

"""represents a hand of playing cards"""

This definition indicates that Hand inherits from Deck; that means we can use
methods like pop card and add card for Hands as well as Decks.

Hand also inherits the init method from Deck, but it doesn’t really do what we
want: instead of populating the hand with 52 new cards, the init method for
Hands should initialize cards with an empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck
class:

inside class Hand:

186 Chapter 18. Inheritance

def __init__(self, label=’’):

self.cards = []

self.label = label

So when you create a Hand, Python invokes this init method:

>>> hand = Hand(’new hand’)

>>> print hand.cards

[]

>>> print hand.label

new hand

But the other methods are inherited from Deck, so we can use pop card and
add card to deal a card:

>>> deck = Deck()

>>> card = deck.pop_card()

>>> hand.add_card(card)

>>> print hand

King of Spades

The next natural step is to encapsulate this code in a method called move cards:

#inside class Deck:

def move_cards(self, hand, num):

for i in range(num):

hand.add_card(self.pop_card())

move cards takes two arguments, a Hand object and the number of cards to
deal. It modifies both self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back
to the deck. You can use move cards for any of these operations: self can be
either a Deck or a Hand, and hand, despite the name, can also be a Deck.
Exercise 18.3. Write a Deck method called deal hands that takes two param-
eters, the number of hands and the number of cards per hand, and that creates
new Hand objects, deals the appropriate number of cards per hand, and returns
a list of Hand objects.

Inheritance is a useful feature. Some programs that would be repetitive without
inheritance can be written more elegantly with it. Inheritance can facilitate code
reuse, since you can customize the behavior of parent classes without having
to modify them. In some cases, the inheritance structure reflects the natural
structure of the problem, which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a
method is invoked, it is sometimes not clear where to find its definition. The
relevant code may be scattered among several modules. Also, many of the things
that can be done using inheritance can be done as well or better without it.

18.8. Writing modules for import 187

18.8 Writing modules for import

18.9 Class diagrams

So far we have seen stack diagrams, which show the state of a program, and
object diagrams, which show the attributes of an object and their values. These
diagrams represent a snapshot in the execution of a program, so they change as
the program runs.

They are also highly detailed, and for some applications, too detailed. A class di-
agrams is a more abstract representation of the structure of a program. Instead
of showing individual objects, it shows classes and the relationships between
them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class.
For example, each Rectangle contains a reference to a Point, and each
Deck contains references to many Cards. This kind of relationship is
called HAS-A, as in, “a Rectangle has a Point.”

• One class might inherit from another. This relationship is called IS-A, as
in, “a Hand is a kind of a Deck.”

• Once class might depend on another in the sense that changes in one class
would require changes in the other.

A class diagram is a graphical representation of these relationships between
classes. For example, this diagram shows the relationships between Card, Deck
and Hand.

Hand

Deck * Card

The arrow with a hollow triangle head represents an IS-A relationship; in this
case it indicates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshop; in this case a Deck
has references to Card objects.

The star (*) near the arrow head is a multiplicity; it indicates how many Cards
a Deck has. A multiplicity can be a simple number, like 52, a range, like 5..7

or a star, which indicates that a Deck can have any number of Cards.

188 Chapter 18. Inheritance

18.10 Glossary

encode: To represent one set of values using another set of values by construct-
ing a mapping between them.

class attribute: An attribute associated with a class object. Class attributes
are defined inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface to another
function without doing much computation.

inheritance: The ability to define a new class that is a modified version of a
previously defined class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing class; also called
a “subclass.”

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances
of one class contain references to instances of the other.

class diagram: A diagram that shows the classes in a program and the rela-
tionships between them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relation-
ship, how many references there are to instances of another class.

18.11 Exercises

The following are the possible hands in poker, in increasing order of value (and
decreasing order of probability):

pair: two cards with the same rank

two pair: two pairs of cards with the same rank

three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or low, so
Ace-2-3-4-5 is a straight and so is 10-Jack-Queen-King-Ace, but
Queen-King-Ace-2-3 is not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

18.11. Exercises 189

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same
suit

The goal of these exercises is to estimate the probability of drawing these various
hands.

1. Download the following files from XXX

Card.py : A complete version of the Card, Deck and Hand classes in this
chapter.

PokerHand.py : An incomplete implementation of a class that represents
a poker hand, and some code that tests it.

2. If you run PokerHand.py, it deals six 7-card poker hands and checks to
see if any of them contains a flush. Read this code carefully before you go
on.

3. Add methods to PokerHand.py named has pair, has twopair, etc. that
return True or False according to whether or not the hand meets the
relevant criteria. Your code should work correctly for “hands” that contain
any number of cards (although 5 and 7 are the most common sizes).

4. Write a method named classify that figures out the highest-value classi-
fication for a hand and sets the label attribute accordingly. For example,
a 7-card hand might contain a flush and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methods are working, the
next step is to estimate the probablities of the various hands. Write a func-
tion in PokerHand.py that shuffles a deck of cards, divides it into hands,
classifies the hands, and counts the number of times various classifications
appear.

6. Print a table of the classifications and their probabilities. Run your pro-
gram with larger and larger numbers of hands until the output values
converge to a reasonable degree of accuracy.

190 Chapter 18. Inheritance

Chapter 19

Case study: Tkinter

Most of the programs we have seen so far are text-based, but many programs
use graphical user interfaces, also known as GUIs.

Python provides several choices for writing GUI-based programs, including wx-
Python, Tkinter, and Qt. Each has pros and cons, which is why Python has
not converged on a standard.

The one I will present in this chapter is Tkinter because I think it is the easiest
to get started with. Most of the concepts in this chapter apply to the other GUI
modules, too.

One drawback of Tkinter is that it is based on another language, called Tk
(Tkinter is the Python interface to Tk, hence the name). The documentation
of Tkinter is written in ...

I have written a module called Gui.py that provides a simplified interface to
Tkinter. I will present ...

There are several books and web pages about Tkinter. One of the best online
resources is An Introduction to Tkinter by Fredrik Lundh.

19.1 Widgets

Graphical user interfaces are made up of elements called widgets. Common
widgets include:

Button: A widget, containing text or an image, that performs an action when
pressed.

Canvas: A region that can display lines, rectangles, circles and other shapes.

192 Chapter 19. Case study: Tkinter

Entry: A region where users can type text.

Scrollbar: A widget that controls the view of another widget.

Frame: A container, often invisible, that contains other widgets.

To create a GUI, you have to import Gui and instantiate a Gui object:

>>> from Gui import *

>>> g = Gui()

When you run this code, a window should appear with an empty gray square
and the title tk. To change the title, you can invoke title on g:

>>> g.title(’The Title’)

The empty gray square is a Frame. When you create a new widget, it is added
to this Frame.

19.2 Buttons and callbacks

The method bu creates a Button widget:

>>> button = g.bu(text=’Press me.’)

The return value from bu is a Button object. The button that appears in the
Frame is a graphical representation of this object; you can control the button
by invoking methods on it.

bu takes up to 32 parameters that control the appearance and function of the
button. These parameters are called options. Instead of providing values for
all 32 options, you can use keyword arguments, like text=’Press me.’, to
specify only the options you need and use the default values for the rest.

When you add a widget to the Frame, it gets “shrink-wrapped;” that is, the
Frame shrinks to the size of the Button. If you add more widgets, the Frame
grows to accomodate them.

For example, the method la creates a Label widget:

>>> label = g.la(text=’Press the button.’)

By default, Tkinter stacks the widgets top-to-bottom and centers them. We’ll
see how to override that behavior later.

If you press the button, you will see that it doesn’t do much. That’s because
you haven’t “wired it up;” that is, you haven’t told it what to do!

The option that controls the behavior of a button is command. The value of
command is a function that gets executed when the button is pressed. For ex-
ample, here is a function that creates a new Label:

19.3. Canvas widgets 193

def make_label():

g.la(text=’Thank you.’)

Now we can create a button with this function as its command:

button2 = g.bu(text=’No, press me!’, command=make_label)

When you press this button, it should execute make label and a new label
should appear.

The value of command is a function object. It is a common error to call this
function rather than passing a reference to it, like this:

button3 = g.bu(text=’This is wrong!’, command=make_label())

If you run this code, you will see that it calls make label immediately, and then
creates the button. When you press the button, it does nothing because the
return value from make label is None.

A function used as a Button command is called a callback because after you
call bu to create the button, the flow of execution “calls back” when the user
presses the button.

This kind of flow is characteristic of event-driven programming. User ac-
tions, like button presses and key strokes, are called events. In event-driven
programming, the flow of execution is determined by user actions rather than
by the programmer.

The challenge of event-driven programming is to construct a set of widgets and
callbacks that works correctly (or at least generate appropriate error messages)
for any sequence of user actions.
Exercise 19.1. Write a program that creates a GUI with a single button. When
the button is pressed it should create a second button. When that button is
pressed, it should create a label that says, “Nice job!”.

19.3 Canvas widgets

One of the most versatile widgets is the Canvas, which creates a region for
drawing lines, circles and other shapes. The method ca creates a new Canvas:

>>> canvas = g.ca(width=500, height=500)

width and height are the dimensions of the canvas in pixels. By default, the
background of the canvas is gray, but you can override it with the bg option.

You can change the options of a widget at any time with the config method:

>>> canvas.config(bg=’white’)

194 Chapter 19. Case study: Tkinter

config takes the same set of options as the method that created the widget.
The value of bg is a string that names a color. The set of legal color names
is different for different implementations of Python, but all implementations
provide at least the following colors:

white black

red green blue

cyan yellow magenta

Shapes on a Canvas are called items. For example, the Canvas method circle

draws (you guessed it) a circle:

>>> item = canvas.circle([0,0], 100, fill=’red’)

The first argument is a coordinate pair that specifies the center of the circle;
the second is the radius.

Gui.py provides a standard Cartesian coordinate system with the origin at the
center of the Canvas and the positive y axis pointing up. This is different from
some other graphics systems where the the origin is in the upper left with the
y axis pointing down.

The fill option specifies that the circle should be filled in with red.

The return value from circle is an Item object that provides methods for
modifying the item on the canvas. For example, you can use config to change
any of the circle’s options:

>>> item.config(fill=’yellow’, outline=’orange’, width=10)

width is the thickness of the outline in pixels; outline is the color.
Exercise 19.2. Write a program that creates a Canvas and a Button. When
the user presses the Button, it should draw a circle on the canvas.

19.4 Coordinate sequences

The rectangle method takes a sequence of coordinates that specify opposite
corners of the rectangle. This example draws a green rectangle with the lower
left corner at the origin and the upper right corner at (200, 100):

>>> canvas.rectangle([[0, 0], [200, 100]],

fill=’blue’, outline=’orange’, width=10)

This way of specifying corners is called a bounding box because the two points
bound the rectangle.

oval takes a bounding box and draws an oval within the specified rectangle:

>>> canvas.oval([[0, 0], [200, 100]], outline=’orange’, width=10)

19.5. More widgets 195

line takes a sequence of coordinates and draws a line that connects the points.
This example draws two legs of a triangle:

>>> canvas.line([[0, 100], [100, 200], [200, 100]], width=10)

polygon takes the same arguments, but it draws the last leg of the polygon (if
necessary) and fills it in:

>>> canvas.polygon([[0, 100], [100, 200], [200, 100]],

fill=’red’, outline=’orange’, width=10)

19.5 More widgets

Tkinter provides two widgets that let users type text: an Entry, which is a single
line, and a Text widget, which has multiple lines.

en creates a new Entry:

>>> entry = g.en(text=’Default text.’)

The text option allows you to put text into the entry when it is created. The
get method returns the contents of the Entry (which may have been changed
by the user):

>>> entry.get()

’Default text.’

te creates a text widget:

>>> text = g.te(width=100, height=5)

width and height are the dimensions of the widget in characters and lines.

insert puts text into the Text widget:

>>> text.insert(END, ’A line of text.’)

END is a special index that indicates the last character in the Text widget. You
can also indicate a character in dot notation, with the line number before the
dot and the column number after. This example adds the letters ’nother’ after
the first character of the first line.

>>> text.insert(1.1, ’nother’)

This example returns all the text in the widget, including a newline between
lines:

>>> text.get(0.0, END)

’Another line of text.\n’

196 Chapter 19. Case study: Tkinter

And this example deletes all but the first two characters:

>>> text.delete(1.2, END)

>>> text.get(0.0, END)

’An\n’

Exercise 19.3. Modify your solution to Exercise 19.2 by adding an Entry widget
and a second button. When the user presses the second button, it should read a
color name from the Entry and use it to change the fill color of the circle.

19.6 Packing widgets

So far we have been stacking widgets in a single column, but in most GUIs the
layout is more complicated. For example, here is a slightly simplified version of
TurtleWorld (see Chapter 4).

This section presents the code that creates this GUI, broken into a series of
steps.

At the top level, this GUI contains two widgets—a Canvas and a Frame—
arranged in a row. So the first step is to create the row.

class SimpleTurtleWorld(TurtleWorld):

"""This class is identical to TurtleWorld, but the code that

lays out the GUI is simplified for explanatory purposes."""

19.6. Packing widgets 197

def setup(self):

self.row([1,0])

...

setup is the function that creates and arranges the widgets. Arranging widgets
in a GUI is called packing.

row creates a row Frame and makes it the “current Frame.” Until this Frame is
closed or another Frame is created, all subsequent widgets are packed in a row.

The argument to row is a list of weights, which determine how extra space
is allocated between widgets. The list [1,0] means that all extra space is
allocated to the first widget, which is the Canvas. If you run this code and
resize the window, you will see that the Canvas grows and the column of other
widgets doesn’t.

Here is the code that creates the Canvas and the column:

self.canvas = self.ca(width=400, height=400, bg=’white’)

self.col([0,0,1])

col creates a column Frame; the argument, again, is a list of weights. In this
case, the third widget (which we haven’t created yet) gets the extra space.

The first widget in the column is a grid Frame, which contains four buttons
arranged two-by-two:

self.gr(2, [1,1], [1,1])

self.bu(text=’Print canvas’, command=self.canvas.dump)

self.bu(text=’Quit’, command=self.quit)

self.bu(text=’Make Turtle’, command=self.make_turtle)

self.bu(text=’Clear’, command=self.clear)

self.endfr()

gr creates the grid; the arguments are:

• The number of columns in the grid. Widgets in the grid are layed out
left-to-right, top-to-bottom.

• The column weights, which determine how extra space is allocated between
the columns in the grid.

• The row weights, which determine how extra space is allocated between
the rows.

In this example, extra space is allocated equally to all four buttons.

The first button uses self.canvas.dump as a callback; the second uses
self.quit. These are bound methods, which means they are associated with

198 Chapter 19. Case study: Tkinter

a particular object. When they are invoked, they are invoked on that object.
self is the TurtleWorld that is the subject of this method and self.canvas is
the Canvas we created in the previous block of code.

The next widget in the column is a row Frame that contains a Button and an
Entry:

self.row([0,1], pady=30)

self.bu(text=’Run file’, command=self.run_file)

self.en_file = self.en(text=’snowflake.py’, width=5)

self.endrow()

In this case, extra space is allocated to the second widget in the row, the Entry.

The option pady “pads” this row in the y direction, adding 30 pixels of space
above and below.

endrow ends this row of widgets, so subsequent widgets are packed in the column
Frame. Gui.py keeps a stack of Frames:

• When you use row, col or gr to create a Frame, it goes on top of the
stack and becomes the current Frame.

• When you use endrow, endcol or endgr to close a Frame, it gets popped
off the stack and the previous Frame on the stack becomes the current
Frame.

The method run file reads the contents of the Entry, uses it as a filename to
open the file, reads the contents, and passes it to run code. self.inter is an
Interpreter object that knows how to take a string and execute it as Python
code.

def run_file(self):

filename = self.en_file.get()

fp = open(filename)

source = fp.read()

self.inter.run_code(source, filename)

The last two widgets are a Text widget and a Button:

self.te_code = self.te(width=25, height=10)

self.te_code.insert(END, ’world.clear()\n’)

self.te_code.insert(END, ’bob = Turtle(world)\n’)

self.bu(text=’Run code’, command=self.run_text)

self.endcol()

run text is similar to run file except that it takes the code from the Text
widget instead of from a file:

19.7. Menus and Callables 199

def run_text(self):

source = self.te_code.get(1.0, END)

self.inter.run_code(source, ’<user-provided code>’)

Unfortunately, the details of packing widgets are different in other languages,
and in different Python modules. Tkinter alone provides three different mech-
anisms for arranging widgets. These mechanisms are called geometry man-

agers. The one I demonstrated in this section is the “grid” geometry manager;
the others are called “pack” and “place”.

Fortunately, most of the concepts in this section apply to other GUI modules
and other languages.

19.7 Menus and Callables

A Menubutton is a widget that looks like a button, but when pressed it pops
up a menu. After the user selects an item, the menu disappears.

Here is code that creates a color selection Menubutton:

g = Gui()

g.la(’Select a color:’)

colors = [’red’, ’green’, ’blue’]

mb = g.mb(text=colors[0])

mb creates the Menubutton. Initially, the text on the button is the name of the
default color. The following loop creates one menu item for each color:

for color in colors:

g.mi(mb, text=color, command=Callable(set_color, color))

The first argument of mi is the Menubutton these items are associated with.

The command option is a Callable object, which is something new. So far we
have seen functions and bound methods used as callbacks, which works fine as
long as you don’t have to pass any arguments to the function. To do that, you
have to construct a Callable object that contains the function, like set color

and the arguments, like color.

The Callable object stores a reference to the function and the arguments as
attributes. Later, when the user clicks on a menu item, the callback calls the
function and passes the stored arguments.

Here is what set color might look like:

def set_color(color):

mb.config(text=color)

print color

200 Chapter 19. Case study: Tkinter

When the user selects a menu item and set color is called, it configures the
Menubutton to display the newly-selected color. It also print the color; if you
try this example, you can confirm that set color is called when you select an
item (and not called when you create the Callable object).

19.8 Binding

A binding is an association between a widget, an event and a callback: when
an event (like a button press) happens on a widget, the callback is invoked.

Many widgets have default bindings. For example, when you press a button,
the default binding changes the relief of the button to make it look depressed.
When you release the button, the binding restores the appearance of the button
and invokes the callback specified with the command option.

You can use the bind method to override these default bindings or to add new
ones. For example, this code creates a binding for a canvas:

ca.bind(’<ButtonPress-1>’, make_circle)

The first argument is an event string; this event is triggered when the user
presses the left mouse button. Other mouse events include ButtonMotion,
ButtonRelease and Double-Button.

The second argument is an event-handler. An event-handler is a function or
bound method, like a callback, but an important difference is an event handler
takes an Event object as a parameter. Here is an example:

def make_circle(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill=’red’)

The Event object contains information about the type of event and details like
the coordinates of the mouse pointer. In this example the information we need
is the location of the mouse click. These values are in “pixel coordinates,” which
are defined by the underlying graphical system. The method canvas coords

translates them to “Canvas coordinates,” which are compatible with Canvas
methods like circle.

For Entry widgets, it is common to bind the <Return> event, which is triggered
when the use presses the Return or Enter key. For example, the following code
creates a Button and an Entry.

bu = g.bu(’Make text item:’, make_text)

en = g.en()

en.bind(’<Return>’, make_text)

19.8. Binding 201

make text is called when the Button is pressed or when the user hits Return

while typing in the Entry. To make this work, we need a function that can be
called as a command (with no arguments) or as an event handler (with an Event
as an argument):

def make_text(event=None):

text = en.get()

item = ca.text([0,0], text)

make text gets the contents of the Entry and displays it as a Text item in the
Canvas.

It is also possible to create bindings for Canvas items. The following is a class
definition for Draggable, which is a child class of Item that provides bindings
that implement drag-and-drop capability.

class Draggable(Item):

def __init__(self, item):

self.canvas = item.canvas

self.tag = item.tag

self.bind(’<Button-3>’, self.select)

self.bind(’<B3-Motion>’, self.drag)

self.bind(’<Release-3>’, self.drop)

The init method takes an Item as a parameter. It copies the attributes of the
Item and then creates bindings for three events: a button press, button motion,
and button release.

The event handler select stores the coordinates of the current event and the
original color of the item, then changes the color to white:

def select(self, event):

self.dragx = event.x

self.dragy = event.y

self.fill = self.cget(’fill’)

self.config(fill=’white’)

cget stands for “get configuration;” it takes the name of an option as a string
and returns the current value of that option.

drag computes how far the object has moved relative to the starting place,
updates the stored coordinates, and then moves the item.

def drag(self, event):

dx = event.x - self.dragx

dy = event.y - self.dragy

202 Chapter 19. Case study: Tkinter

self.dragx = event.x

self.dragy = event.y

self.move(dx, dy)

This computation is done in pixel coordinates; there is no need to convert to
Canvas coordinates.

Finally, drop restores the original color of the item:

def drop(self, event):

self.config(fill=self.fill)

You can use the Draggable class to add drag-and-drop capability to an existing
item. For example, here is a modified version of make circle that uses circle
to create an Item and Draggable to make it draggable:

def make_circle(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill=’red’)

item = Draggable(item)

One of the benefits of inheritance is that you can modify the capabilities of a
parent class without modifying its definition. This is particularly useful if you
want to change behavior defined in a module you did not write.

19.9 Debugging

One of the difficulties of inheritance is that it is not easy to find the definition
of a method, especially if there are many levels in the inheritance hierarchy.

UML class diagrams.

19.10 Glossary

GUI: A graphical user interface.

widget: One of the elements that makes up a GUI, including buttons, menus,
text entry fields, etc.

option: A value that controls the appearance or function of a widget.

keyword argument: An argument that indicates the parameter name as part
of the function call.

callback: A function associated with a widget that is called when the user
performs an action.

19.11. Exercises 203

bound method: A method associated with a particular instance.

event-drive programming: A style of programming in which the flow of ex-
ecution is determined by user actions.

event: A user action, like a mouse click or key press, that causes a GUI to
respond.

item: A graphical element on a Canvas widget.

bounding box: A rectangle that encloses a set of items, usually specified by
two opposing corners.

pack: To arrange and display the elements of a GUI.

geometry manager: A system for packing widgets.

binding: An association between a widget, an event, and an event handler.
The event handler is called when the the event occurs in the widget.

19.11 Exercises

Exercise 19.4.

204 Chapter 19. Case study: Tkinter

Appendix A

Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish
among them in order to track them down more quickly:

• Syntax errors are produced by Python when it is translating the source
code into byte code. They usually indicate that there is something wrong
with the syntax of the program. Example: Omitting the colon at the end
of a def statement yields the somewhat redundant message SyntaxError:
invalid syntax.

• Runtime errors are produced by the runtime system if something goes
wrong while the program is running. Most runtime error messages include
information about where the error occurred and what functions were exe-
cuting. Example: An infinite recursion eventually causes a runtime error
of “maximum recursion depth exceeded.”

• Semantic errors are problems with a program that compiles and runs but
doesn’t do the right thing. Example: An expression may not be evaluated
in the order you expect, yielding an unexpected result.

The first step in debugging is to figure out which kind of error you are deal-
ing with. Although the following sections are organized by error type, some
techniques are applicable in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Un-
fortunately, the error messages are often not helpful. The most common
messages are SyntaxError: invalid syntax and SyntaxError: invalid

token, neither of which is very informative.

206 Appendix A. Debugging

On the other hand, the message does tell you where in the program the problem
occurred. Actually, it tells you where Python noticed a problem, which is not
necessarily where the error is. Sometimes the error is prior to the location of
the error message, often on the preceding line.

If you are building the program incrementally, you should have a good idea
about where the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s
code very carefully. Check every character. At the same time, remember that
the book might be wrong, so if you see something that looks like a syntax error,
it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound
statement, including for, while, if, and def statements.

3. Check that indentation is consistent. You may indent with either spaces
or tabs but it’s best not to mix them. Each level should be nested the
same amount.

4. Make sure that any strings in the code have matching quotation marks.

5. If you have multiline strings with triple quotes (single or double), make
sure you have terminated the string properly. An unterminated string
may cause an invalid token error at the end of your program, or it may
treat the following part of the program as a string until it comes to the
next string. In the second case, it might not produce an error message at
all!

6. An unclosed bracket—(, {, or [—makes Python continue with the next
line as part of the current statement. Generally, an error occurs almost
immediately in the next line.

7. Check for the classic = instead of == inside a conditional.

If nothing works, move on to the next section...

A.1.1 I can’t get my program to run no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because
you and the compiler are not looking at the same code. Check your programming
environment to make sure that the program you are editing is the one Python is
trying to run. If you are not sure, try putting an obvious and deliberate syntax
error at the beginning of the program. Now run (or import) it again. If the

A.2. Runtime errors 207

compiler doesn’t find the new error, there is probably something wrong with
the way your environment is set up.

If this happens, one approach is to start again with a new program like “Hello,
World!,” and make sure you can get a known program to run. Then gradually
add the pieces of the new program to the working one.

A.2 Runtime errors

Once your program is syntactically correct, Python can import it and at least
start running it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but
does not actually invoke anything to start execution. This may be intentional
if you only plan to import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start
execution, or execute one from the interactive prompt. Also see the “Flow of
Execution” section below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging.” Often
that means that it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print

statement immediately before the loop that says “entering the loop” and
another immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the second, you’ve
got an infinite loop. Go to the “Infinite Loop” section below.

• Most of the time, an infinite recursion will cause the program to run for
a while and then produce a “RuntimeError: Maximum recursion depth
exceeded” error. If that happens, go to the “Infinite Recursion” section
below.

If you are not getting this error but you suspect there is a problem with
a recursive method or function, you can still use the techniques in the
“Infinite Recursion” section.

• If neither of those steps works, start testing other loops and other recursive
functions and methods.

208 Appendix A. Debugging

• If that doesn’t work, then it is possible that you don’t understand the
flow of execution in your program. Go to the “Flow of Execution” section
below.

Infinite Loop

If you think you have an infinite loop and you think you know what loop is
causing the problem, add a print statement at the end of the loop that prints
the values of the variables in the condition and the value of the condition.

For example:

while x > 0 and y < 0 :

do something to x

do something to y

print "x: ", x

print "y: ", y

print "condition: ", (x > 0 and y < 0)

Now when you run the program, you will see three lines of output for each
time through the loop. The last time through the loop, the condition should be
false. If the loop keeps going, you will be able to see the values of x and y,
and you might figure out why they are not being updated correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while
and then produce a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start
by checking to make sure that there is a base case. In other words, there should
be some condition that will cause the function or method to return without
making a recursive invocation. If not, then you need to rethink the algorithm
and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a
print statement at the beginning of the function or method that prints the
parameters. Now when you run the program, you will see a few lines of output
every time the function or method is invoked, and you will see the parameters.
If the parameters are not moving toward the base case, you will get some ideas
about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program,
add print statements to the beginning of each function with a message like

A.2. Runtime errors 209

“entering function foo,” where foo is the name of the function.

Now when you run the program, it will print a trace of each function as it is
invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes
the name of the exception, the line of the program where the problem occurred,
and a traceback.

The traceback identifies the function that is currently running, and then the
function that invoked it, and then the function that invoked that, and so on. In
other words, it traces the path of function invocations that got you to where
you are. It also includes the line number in your file where each of these calls
occurs.

The first step is to examine the place in the program where the error occurred
and see if you can figure out what happened. These are some of the most
common runtime errors:

NameError: You are trying to use a variable that doesn’t exist in the current
environment. Remember that local variables are local. You cannot refer
to them from outside the function where they are defined.

TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexing a string,
list, or tuple with something other than an integer.

• There is a mismatch between the items in a format string and the
items passed for conversion. This can happen if either the number of
items does not match or an invalid conversion is called for.

• You are passing the wrong number of arguments to a function or
method. For methods, look at the method definition and check that
the first parameter is self. Then look at the method invocation;
make sure you are invoking the method on an object with the right
type and providing the other arguments correctly.

KeyError: You are trying to access an element of a dictionary using a key
value that the dictionary does not contain.

AttributeError: You are trying to access an attribute or method that does
not exist.

IndexError: The index you are using to access a list, string, or tuple is greater
than its length minus one. Immediately before the site of the error, add
a print statement to display the value of the index and the length of the
array. Is the array the right size? Is the index the right value?

210 Appendix A. Debugging

A.2.4 I added so many print statements I get inundated

with output.

One of the problems with using print statements for debugging is that you can
end up buried in output. There are two ways to proceed: simplify the output
or simplify the program.

To simplify the output, you can remove or comment out print statements
that aren’t helping, or combine them, or format the output so it is easier to
understand.

To simplify the program, there are several things you can do. First, scale down
the problem the program is working on. For example, if you are sorting an
array, sort a small array. If the program takes input from the user, give it the
simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program
to make it as easy to read as possible. For example, if you suspect that the
problem is in a deeply nested part of the program, try rewriting that part with
simpler structure. If you suspect a large function, try splitting it into smaller
functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you
find that a program works in one situation but not in another, that gives you a
clue about what is going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make
a change that you think doesn’t affect the program, and it does, that can tip
you off.

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug, because the compiler
and the runtime system provide no information about what is wrong. Only you
know what the program is supposed to do, and only you know that it isn’t doing
it.

The first step is to make a connection between the program text and the behavior
you are seeing. You need a hypothesis about what the program is actually doing.
One of the things that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and
with some debuggers you can. But the time it takes to insert a few well-placed
print statements is often short compared to setting up the debugger, inserting
and removing breakpoints, and “walking” the program to where the error is
occurring.

A.3. Semantic errors 211

A.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t
seem to be happening? Find the section of the code that performs that
function and make sure it is executing when you think it should.

• Is something happening that shouldn’t? Find code in your program that
performs that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected?
Make sure that you understand the code in question, especially if it in-
volves invocations to functions or methods in other Python modules. Read
the documentation for the functions you invoke. Try them out by writing
simple test cases and checking the results.

In order to program, you need to have a mental model of how programs work.
If you write a program that doesn’t do what you expect, very often the problem
is not in the program; it’s in your mental model.

The best way to correct your mental model is to break the program into its
components (usually the functions and methods) and test each component in-
dependently. Once you find the discrepancy between your model and reality,
you can solve the problem.

Of course, you should be building and testing components as you develop the
program. If you encounter a problem, there should be only a small amount of
new code that is not known to be correct.

A.3.2 I’ve got a big hairy expression and it doesn’t do

what I expect.

Writing complex expressions is fine as long as they are readable, but they can
be hard to debug. It is often a good idea to break a complex expression into a
series of assignments to temporary variables.

For example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor(i)

pickedCard = self.hands[neighbor].popCard()

self.hands[i].addCard(pickedCard)

212 Appendix A. Debugging

The explicit version is easier to read because the variable names provide addi-
tional documentation, and it is easier to debug because you can check the types
of the intermediate variables and display their values.

Another problem that can occur with big expressions is that the order of eval-
uation may not be what you expect. For example, if you are translating the
expression x

2π
into Python, you might write:

y = x / 2 * math.pi

That is not correct because multiplication and division have the same precedence
and are evaluated from left to right. So this expression computes xπ/2.

A good way to debug expressions is to add parentheses to make the order of
evaluation explicit:

y = x / (2 * math.pi)

Whenever you are not sure of the order of evaluation, use parentheses. Not
only will the program be correct (in the sense of doing what you intended), it
will also be more readable for other people who haven’t memorized the rules of
precedence.

A.3.3 I’ve got a function or method that doesn’t return

what I expect.

If you have a return statement with a complex expression, you don’t have
a chance to print the return value before returning. Again, you can use a
temporary variable. For example, instead of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()

return count

Now you have the opportunity to display the value of count before returning.

A.3.4 I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit
waves that affect the brain, causing these effects:

• Frustration and/or rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking
(“the program only works when I wear my hat backward”).

A.3. Semantic errors 213

• Random-walk programming (the attempt to program by writing every
possible program and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a
walk. When you are calm, think about the program. What is it doing? What
are some possible causes of that behavior? When was the last time you had a
working program, and what did you do next?

Sometimes it just takes time to find a bug. We often find bugs when we are
away from the computer and let our minds wander. Some of the best places to
find bugs are trains, showers, and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you
work on a program so long that you can’t see the error. A fresh pair of eyes is
just the thing.

Before you bring someone else in, make sure you have exhausted the techniques
described here. Your program should be as simple as possible, and you should
be working on the smallest input that causes the error. You should have print

statements in the appropriate places (and the output they produce should be
comprehensible). You should understand the problem well enough to describe
it concisely.

When you bring someone in to help, be sure to give them the information they
need:

• If there is an error message, what is it and what part of the program does
it indicate?

• What was the last thing you did before this error occurred? What were
the last lines of code that you wrote, or what is the new test case that
fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done
to find it faster. Next time you see something similar, you will be able to find
the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn
how to make the program work.

Index

Make Way for Ducklings, 81
+=, 102
None, 30
append, 183
init method, 173
isinstance, 66
is operator, 104
len, 80
try statement, 151

abecedarian, 81, 93
absolute path, 154
access, 98
accumulator, 102, 110, 138
algorithm, 9, 74
aliasing, 105, 110, 159
ambiguity, 6
argument, 21, 27, 32, 106

list, 106
optional, 85, 108, 117, 140

assignment, 12, 19, 69
multiple , 76
tuple, 126, 132

Attribute, 161
attribute, 156, 162

class, 180, 188
instance, 188

AttributeError, 209

base case, 51, 54
benchmarking, 144, 145
binding, 203
body, 32, 54

loop, 71
boolean expression, 45, 54
boolean function, 61

bound method, 203
bounding box, 203
bracket operator, 79
branch, 47, 54
bug, 4, 9

call
function, 21

call graph, 120, 123
callback, 202
Card, 179
catch, 154
chained conditional, 47, 54
character, 79
child class, 185, 188
circular definition, 62
class, 155, 162

Card, 179
parent, 185
Point, 174

class attribute, 180, 188
class diagram, 188
class object, 156, 162
coercion

type, 121
comment, 17, 19
comparison

string, 86
compile, 2, 9
compile-time error, 205
compiler, 205
complete language, 62
composition, 23, 32, 60, 183
compound statement, 47, 54
computational pattern, 83
concatenate, 108

Index 215

concatenation, 16, 19, 81, 83

list, 100

condition, 47, 54, 71, 208

conditional

chained, 47, 54

conditional branching, 47

conditional execution, 47

conditional operator, 182

conditional statement, 54

conversion

type, 22

copy, 107

copy module, 159

copying, 107, 159

counter, 83, 89

data structure, 145

data type

dictionary, 113

immutable, 125

long integer, 121

tuple, 125

database, 154

dead code, 58, 68

debugging, 4, 9, 205

deck, 183

decrement, 70, 76

deep copy, 162

default value, 145

definition

circular, 62

function, 24

deletion

list, 103

delimiter, 108, 110

deterministic, 145

development plan, 44

incremental, 58

diagram

call graph, 123

class, 188

object, 156, 158, 160, 162, 163,
181

stack, 28, 106

state, 12, 69, 88, 98, 105, 118, 130,
156, 158, 160, 163, 181

dictionary, 113, 122, 129, 209
looping, 116

Dijkstra, Edsger, 96
directory, 154
division

floating-point, 15
floor, 15, 53
integer, 45

divmod, 127, 167
docstring, 44, 155
dot notation, 23, 32, 84
Doyle, Arthur Conan, 5
DSU, 135, 145

Einstein, Albert, 41
element, 97, 110
empty list, 97
empty string, 88
encapsulation, 39, 44
encode, 179, 188
encrypt, 179
equivalent, 105, 110
error

compile-time, 205
IndexError, 99
runtime, 4, 51, 205
semantic, 4, 205, 210
syntax, 4, 205
TypeError, 82

error checking, 65
error messages, 205
event, 203
event-drive programming, 203
exception, 4, 9, 117, 205, 209

Attribute, 161
catching, 151
IndexError, 80
IOError, 151
KeyError, 114
NameError, 28
RuntimeError, 51
SyntaxError, 24
TypeError, 79, 126, 149, 172

216 Index

ValueError, 127
executable, 9
execution

flow, 208
expression, 14, 19

big and hairy, 211
boolean, 45, 54

factorial function, 63, 65
Fibonacci function, 65, 120
file, 147
file object, 91, 96
filter, 103, 110
float, 11
floating-point, 19
floating-point division, 15
floor division, 15, 19, 53
flow of execution, 26, 32, 208
for loop, 80, 100
formal language, 5, 9
format operator, 148, 154, 209
format sequence, 154
format string, 148, 154
frabjuous, 62
frame, 28, 32, 50, 120
Franklin, Benjamin, vi
fruitful function, 30, 32
function, 24, 31, 163, 170

argument, 27
boolean, 61
composition, 60
factorial, 63
fruitful, 30
math, 22
parameter, 27
recursive, 50
tuple as return value, 127
void, 30

function call, 21, 32
function definition, 24, 31, 32
function frame, 28, 32, 50, 120
function type

modifier, 165
pure, 164

functional programming style, 166, 168

gamma function, 66
generalization, 44, 167
geometry manager, 203
global variable, 123
guardian, 68
GUI, 202

hanging, 207
HAS-A, 188
hash function, 119, 123
hashable, 119, 123
hashtable, 122
header, 32
hello world, 7
high-level language, 2, 9
hint, 120, 123
histogram, 115, 123
Holmes, Sherlock, 5

identical, 105, 110
immutable, 88, 125
immutable string, 82
implementation, 122
import, 32
in operator, 99
increment, 70, 76
incremental development, 68
incremental program development, 206
index, 79, 88, 110, 113, 209

negative, 80
IndexError, 80, 99, 209
infinite loop, 71, 76, 207, 208
infinite recursion, 51, 54, 65, 207, 208
inheritance, 185, 188
initialization method, 183
initialize, 70
instance, 44, 156, 158, 162
instance attribute, 188
instantiation, 156
int, 11
integer, 19

long, 121
integer division, 45
interface, 41, 44
interpret, 2, 9

Index 217

invocation, 84, 89
invoke, 84
IOError, 151
IS-A, 188
item, 88, 97

dictionary, 122
item (canvas), 203
iteration, 69, 70, 76

key, 113, 122
key-value pair, 113, 122
KeyError, 114, 209
keyword, 13, 19
keyword argument, 202

language
complete, 62
formal, 5
high-level, 2
low-level, 2
natural, 5
programming, 1
safe, 4

leap of faith, 64
Linux, 5
list, 97, 108, 110, 128

as argument, 106
copying, 107
element, 98
empty, 97
membership, 99
nested, 97
of objects, 183
slice, 101
traversal, 100

list deletion, 103
list methods, 101
list operation, 100
list traversal, 110
literalness, 6
local variable, 28, 32
logical operator, 45, 46
long integer, 121
lookup, 123
lookup, dictionary, 116

loop, 44, 71
body, 71
condition, 208
for, 100
for loop, 80
infinite, 71, 208
nested, 183
traversal, 80
while, 70

low-level language, 2, 9

map, 110
map to, 179
mapping, 98, 110
math function, 22
max, 128
McCloskey, Robert, 81
mental model, 211
method, 84, 89, 163, 170, 178

init, 173
initialization, 183

methods
list, 101

min, 128
model

mental, 211
modifier, 165, 168
module, 22, 32

copy, 107, 159
profile, 144

module object, 22
modulus operator, 45, 54
multiple assignment, 69, 76
multiplicity, 188
mutable, 82, 125

object, 159

NameError, 28, 209
natural language, 5, 9
nested list, 97, 110
newline, 52, 69
None, 58, 68
number

random, 136

object, 88, 104, 105, 110, 155

218 Index

class, 156
file, 91, 96
list of, 183
mutable, 159

object code, 9
object diagram, 156, 158, 160, 162,

163, 181
object-oriented language, 177
object-oriented programming, 169,

177, 185
object-oriented programming lan-

guage, 169
operand, 14, 19
operation

list, 100
operator, 14, 19

+=, 102
is, 104
bracket, 79
conditional, 182
format, 148, 154, 209
in, 99
logical, 45, 46
modulus, 45, 54
overloading, 178
slice, 107

operator overloading, 174, 182
option, 202
optional argument, 85, 108, 117, 140
order of evaluation, 212
order of operations, 16
overloading, 178
override, 145, 182

pack, 203
parameter, 27, 32
parent class, 185, 188
parse, 6, 9
pass statement, 47
path, 154
pattern, 83

search, 117
persistent, 154
planned development, 168
poetry, 6

Point class, 174
polymorphic, 178
polymorphism, 176
portability, 9
portable, 2
precedence, 19, 212
print statement, 7, 9, 210
printing

deck object, 183
object, 170

problem recognition, 96
problem-solving, 9
profile module, 144
program, 9
programming language, 1
prompt, 52
prose, 6
prototype and patch, 168
prototype development, 166
pseudorandom, 145
pure function, 164, 168

raise, 117
random number, 136
range, 97
rank, 179
rectangle, 157
recursion, 49, 50, 54, 62, 64

base case, 51
infinite, 51, 65, 208

reduce, 102, 110
redundancy, 6
refactoring, 42
reference, 110

aliasing, 105
relative path, 154
repetition

list, 100
return statement, 50, 212
return value, 21, 32, 57, 158

tuple, 127
reverse lookup, 123
reverse lookup, dictionary, 116
rules of precedence, 16, 19
runtime error, 4, 9, 51, 205, 209

Index 219

RuntimeError, 51, 65

safe language, 4
scaffolding, 60, 68
script, 9
search, 83, 88, 117
semantic error, 4, 9, 205, 210
semantics, 4, 9
sequence, 79, 88, 97, 131
shallow copy, 162
shuffle, 184
singleton, 123
slice, 81, 88, 101, 107
sort, 185
source code, 9
special case, 96
stack diagram, 28, 32, 50, 106
state diagram, 12, 19, 69, 88, 98, 105,

118, 130, 156, 158, 160, 163,
181

statement, 19
assignment, 12, 69
compound, 47
conditional, 54
pass, 47
print, 7, 9, 210
raising, 117
return, 50, 212
while, 70

string, 11, 19, 108
immutable, 82
length, 80
slice, 81

string comparison, 86
string method, 84
string operation, 16
subclass, 185
subject, 178
suit, 179
syntax, 4, 9, 206
syntax error, 4, 9, 205
SyntaxError, 24

temporary variable, 57, 68, 212
text file, 154

Tkinter, 191
token, 9
traceback, 29, 32, 51, 209
traversal, 80, 83

list, 100
traverse, 88
tuple, 125, 127, 132
tuple assignment, 126, 132
Turing Thesis, 62
Turing, Alan, 62
type, 11, 19

dict, 113
file, 147
float, 11
int, 11
list, 97
long, 121
str, 11
tuple, 125
user-defined, 155

type checking, 65
type coercion, 121
type conversion, 22
type-based dispatch, 175, 178
TypeError, 79, 82, 126, 149, 172, 209

underscore character, 13
update, 70, 76
user-defined type, 155

value, 11, 18, 104, 105, 122
tuple, 127

ValueError, 117, 127
variable, 12, 19

local, 28
temporary, 57, 68, 212

veneer, 184, 188
void function, 30, 32

while statement, 70
widget, 202

