
The Hydrogen Atom
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Applying Schrodinger’s Eqn to the
Hydrogen Atom

                                       -1    e2
The potential:     V(r) =
                                     4p e0  r

Use spherical polar coordinates
(with y(x,y,z) => y(r,q,f) ):
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r = √x2 + y2 + z2

q= cos-1(z/r) 
Polar Angle

f= tan-1(y/x)
Azimuthal Angle

x = r sinq cosf

y = r sinq sinf

z = r cosq 

x

y

z

f

q r



y(r,q,f)  is separable:

fi y(r,q,f) = R(r) f(q) g(f)

Substitute this into S Eqn and apply
appropriate boundary conditions to R, f, g.

fi 3 separate equations and 3 quantum
numbers.  (For more, see section 7.2.)
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        ( r2      ) +       (E-V-                    ) R = 0r2 d r       d r        h2             2m     r2

                                             Radial Eqn.
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                                          Angular Eqn.

ml  and l are quantum numbers.



The Radial Equation
The Radial Equation is
the Associated Laguerre Equation.

We will find the ground-state solution.
Require ml = 0,  l = 0.

        1  d           d R       2m
fi            ( r2      ) +       (E-V ) R = 0        r2 d r       d r        h2

Substitute  V = - e2/(4pe0r) and
insert a trial solution:

R = A e

This works if

  4pe0 h2
a0 =             (Bohr Radius)

    m e2

and   E = - h2/(2ma0
2) = - E0 = - 13.6 eV

-r/a0



Higher order solutions can be found in
terms of associated Laguerre functions.

They are labeled by a quantum number n
(called the principal quantum number).

Energies are

      E = - E0/ n2

(just like the Bohr prediction.)



Angular and Azimuthal Equations

The azimuthal equation is just a SHO
equation with solution g = A eimf.

Single-valuedness requires g(f) = g(f + 2p).

fi ml  is an integer.

The angular equation is the Associated
Legendre Equation.

It is customary to combine the q and  f
solutions together as
Spherical Harmonics Y(q,f)

The quantum numbers satisfy
l = 0, 1, 2, 3, . . .

and
ml  = -l, -l+1, -l+2, . . ., 0, . . ., l-1, l

(They also satisfy  l < n. )



 |Y(q,f)|2

s (l=0)
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Rnl                  and             P(r) = r2 |R2| 

 

Larger n peaks at larger r 

 

 



 

P(x,y,z)    from     r2|R2Y*Y| 

 

 

No φ (x-y plane) dependence, only θ (angle from z axis) 

in these basis functions since φ cancels in  |Y*Y| 

 

 

 

 

 

 



Atomic Quantum Numbers
n Principal Quantum Number

l Orbital Angular Momentum 
Quantum Number

ml Magnetic Quantum Number

n = 1, 2, 3, . . .
l = 0, 1, 2, 3, . . .
ml  = -l, -l +1, -l +2, . . ., 0, . . ., l -1, l

In summary:

n > 0
l < n
|ml| ≤ l



Angular Momentum
Angular momentum of electron in the atom:

L = mvr =  √l(l+1)   h

(Note that this disagrees with Bohr’s
original guess of L = n h.)

For a given n, the energy is En = -E0/n2

independent of l.
The different l states are degenerate.

Historical Notation:
l  =  0     1     2     3     4     5

 s      p    d     f      g     h

States are usually labeled by the
n number and the l letter.

For example: n=3, l=1           3p state.



Magnetic Quantum Number

l determines the total angular momentum:

L =  √l(l+1)   h
ml gives the z component of L:

Lz = ml h

Direction of L can never lie on z axis:
ml <  √l(l+1)  always.

The choice of direction for the z axis is
completely arbitrary.

Lx and Ly are undetermined, except for
  Lx

2 + Ly
2 = L2 - Lz
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 0An example 
for l = 2

fi L = √6 h



Magnetic Effects

An electron orbiting around a
nucleus has magnetic moment m:

                   -e                    -erv       -e
m = IA n =              (pr2) n =         n =        L
                 (2pr/v)                  2         2m

The component in the z direction is:

   -e            -e
mz =        Lz  =        ml h = -ml mB       2m          2m

where  mB = e h/2m
            = 9.274x10-24J/T
            = 5.788x10-5 eV/T
is the Bohr magneton.

In an external magnetic field, B, the
magnetic dipole feels a torque:

t = m x B

and has a potential energy:      VB = -m•B

m



If B is in the z direction then

VB = -mzB = +ml mB B

The energies for different ml, which
were degenerate for B=0, are now
separated into 2l +1 different levels.

This is called the Normal Zeeman Effect.
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The Stern-Gerlach Experiment

In the presence of an inhomogeneous
magnetic field, there will be a net
force on the atoms, depending on ml :

          d VB                   d BFz = -         = ml mB          d z              d z

i.e. In the +z direction        for  +ml
No force        for  ml=0
In the -z direction        for  - ml

Thus, one could split the atoms according
to the quantum number ml :

   N
magnet

S
B

screen

 ml = +1

 ml = 0

 ml = -1

Beam
of atoms

magnet



Electron Spin
1922 - Stern and Gerlach did their
experiment.   The atoms split into two
beams.

But the number of ml values is
always odd:   (2l +1) !

1925 - Goudsmit and Uhlenbeck
proposed that the electron had an
intrinsic spin and an
intrinsic magnetic moment.

In analogy with orbital angular momentum
they proposed a magnetic spin quantum
number:

ms = ± 1/2
S



The electron’s spin can either be
oriented “up” or “down”:

The total spin quantum number is s = 1/2:

|S| = √s(s+1)  h = √ 3/4   h

   -e                  mBmS =      S = - [ 2 ]       S
        m                  h

Compare with:

   -e                  mBmL =       L = - [ 1 ]       L
       2m                 h

[ * ] are called gyromagnetic ratios:

gs = 2 gl = 1

   1+    h
   2

   1-    h
   2



Selection Rules

Allowed transitions:

• lifetimes   t ~ 10-9 sec

D n = anything,    Dl = ±1,     Dml = 0, ±1

Forbidden transitions:

• lifetimes much longer

Ex. 2s Æ 1s, t ~ 1/7 sec

n l ml n’ l‘ ml’
emitted
photon



With no External B, E depends on n only 

Allowed transitions must change the l quantum number 

 

 



Selection Rules and Normal Zeeman Effect

 ml = +2
        +1
         0
        -1
        -2

 ml = +1
         0
        -1

B field always splits spectral lines into 3
for normal Zeeman effect.

l = 1

l = 2

B=0 B nonzero

DE

Dml =-1 Dml = 0 Dml =+1

DE+mBB DE DE-mBB








